Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1990, Volume 30, Number 7, Pages 1057–1070 (Mi zvmmf3234)  

This article is cited in 2 scientific papers (total in 2 papers)

A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator

L. T. Poznyak

Leningrad
References:
Abstract: The partial domain method for problems of the type indicated in the title of this paper is treated as a version either of Weinstein's method of intermediate problems or of the Ritz method. This yields a rigorous justification of the method and enables one to estimate its rate of convergence. The justification technique is demonstrated in detail for the problem of the normal modes of an $\mathrm L$-shaped membrane clamped at its edges.
Received: 27.12.1988
Revised: 12.12.1989
English version:
USSR Computational Mathematics and Mathematical Physics, 1990, Volume 30, Issue 4, Pages 66–75
DOI: https://doi.org/10.1016/0041-5553(90)90045-T
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: Primary 65N25; Secondary 65N30, 35P15, 35J05
Language: Russian
Citation: L. T. Poznyak, “A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator”, Zh. Vychisl. Mat. Mat. Fiz., 30:7 (1990), 1057–1070; U.S.S.R. Comput. Math. Math. Phys., 30:4 (1990), 66–75
Citation in format AMSBIB
\Bibitem{Poz90}
\by L.~T.~Poznyak
\paper A~rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1990
\vol 30
\issue 7
\pages 1057--1070
\mathnet{http://mi.mathnet.ru/zvmmf3234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1070550}
\zmath{https://zbmath.org/?q=an:0708.65099}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1990
\vol 30
\issue 4
\pages 66--75
\crossref{https://doi.org/10.1016/0041-5553(90)90045-T}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf3234
  • https://www.mathnet.ru/eng/zvmmf/v30/i7/p1057
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :137
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024