|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1990, Volume 30, Number 8, Pages 1123–1132
(Mi zvmmf3212)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
I. V. Boykov Penza
Abstract:
Order optimal cubature formulae are constructed for evaluating integrals of functions in class $Q_{r,\gamma}(\Omega,1)$, where $\Omega=[-1,1]^l$, $l\ge2$. Asymptotically optimal quadrature formulae are constructed for evaluating integrals of functions in $Q_{r,\gamma}(\Omega,1)$ where $\Omega=[-1,1]$.
Received: 30.06.1988 Revised: 24.07.1989
Citation:
I. V. Boykov, “Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$”, Zh. Vychisl. Mat. Mat. Fiz., 30:8 (1990), 1123–1132; U.S.S.R. Comput. Math. Math. Phys., 30:4 (1990), 110–117
Linking options:
https://www.mathnet.ru/eng/zvmmf3212 https://www.mathnet.ru/eng/zvmmf/v30/i8/p1123
|
Statistics & downloads: |
Abstract page: | 309 | Full-text PDF : | 122 | References: | 79 | First page: | 1 |
|