Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 3, Pages 518–541 (Mi zvmmf28)  

This article is cited in 4 scientific papers (total in 4 papers)

Numerical algorithm for solving diffusion equations on the basis of multigrid methods

M. E. Ladonkina, O. Yu. Milyukova, V. F. Tishkin

Institute for Mathematical Modeling, Russian Academy of Sciences, pl. Miusskaya 4a, Moscow, 125047, Russia
References:
Abstract: A new effective algorithm based on multigrid methods is proposed for solving parabolic equations. The algorithm preserves implicit-scheme advantages (such as stability, accuracy, and conservativeness) while it involves a considerably reduced amount of arithmetic operations at every time level. The absolute stability, conservativeness, and convergence of the algorithm is proved theoretically using one- and two-dimensional initial-boundary value model problems for the heat equation. The error of the solution is estimated. The good accuracy of the method is demonstrated using two-dimensional model problems, including ones with discontinuous coefficients.
Key words: parabolic equations, multigrid methods, conservative scheme, stability and accuracy of a method.
Received: 10.07.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 3, Pages 502–524
DOI: https://doi.org/10.1134/S0965542509030129
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: M. E. Ladonkina, O. Yu. Milyukova, V. F. Tishkin, “Numerical algorithm for solving diffusion equations on the basis of multigrid methods”, Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009), 518–541; Comput. Math. Math. Phys., 49:3 (2009), 502–524
Citation in format AMSBIB
\Bibitem{LadMilTis09}
\by M.~E.~Ladonkina, O.~Yu.~Milyukova, V.~F.~Tishkin
\paper Numerical algorithm for solving diffusion equations on the basis of multigrid methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 3
\pages 518--541
\mathnet{http://mi.mathnet.ru/zvmmf28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559798}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 3
\pages 502--524
\crossref{https://doi.org/10.1134/S0965542509030129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264922900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-64249136681}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf28
  • https://www.mathnet.ru/eng/zvmmf/v49/i3/p518
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:698
    Full-text PDF :218
    References:80
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024