Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 3, Pages 512–517 (Mi zvmmf27)  

This article is cited in 9 scientific papers (total in 9 papers)

A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped

E. A. Volkov

Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia
Full-text PDF (710 kB) Citations (9)
References:
Abstract: A novel two-stage difference method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. At the first stage, approximate values of the sum of the pure fourth derivatives of the desired solution are sought on a cubic grid. At the second stage, the system of difference equations approximating the Dirichlet problem is corrected by introducing the quantities determined at the first stage. The difference equations at the first and second stages are formulated using the simplest six-point averaging operator. Under the assumptions that the given boundary values are six times differentiable at the faces of the parallelepiped, those derivatives satisfy the Hölder condition, and the boundary values are continuous at the edges and their second derivatives satisfy a matching condition implied by the Laplace equation, it is proved that the difference solution to the Dirichlet problem converges uniformly as $O(h^4\ln h^{-1})$, where $h$ is the mesh size.
Key words: numerical solution to the Laplace equation, convergence of difference solutions, domain in the form of a rectangular parallelepiped.
Received: 18.06.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 3, Pages 496–501
DOI: https://doi.org/10.1134/S0965542509030117
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009), 512–517; Comput. Math. Math. Phys., 49:3 (2009), 496–501
Citation in format AMSBIB
\Bibitem{Vol09}
\by E.~A.~Volkov
\paper A~two-stage difference method for solving the Dirichlet problem for the Laplace equation on a~rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 3
\pages 512--517
\mathnet{http://mi.mathnet.ru/zvmmf27}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559797}
\elib{https://elibrary.ru/item.asp?id=11714015}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 3
\pages 496--501
\crossref{https://doi.org/10.1134/S0965542509030117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264922900011}
\elib{https://elibrary.ru/item.asp?id=13603654}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-64249100176}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf27
  • https://www.mathnet.ru/eng/zvmmf/v49/i3/p512
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:542
    Full-text PDF :177
    References:66
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024