|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 8, Pages 1350–1355
(Mi zvmmf263)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Calculating the eigenvalues of the Sturm–Liouville problem with a fractal indefinite weight
A. A. Vladimirov Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
Abstract:
An efficient method is proposed for calculating the eigenvalues of the boundary value problem $-y''-\lambda\rho y=0,\quad y(0)=y(1)=0$, where $\rho\in\mathring W_2^{-1}[0,1]$ is the generalized derivative of a self-similar function $P\in L_2[0,1]$.
Key words:
Sturm–Liouville problem, method for calculating the eigenvalues, fractal indefinite weight function.
Received: 17.11.2006 Revised: 26.02.2007
Citation:
A. A. Vladimirov, “Calculating the eigenvalues of the Sturm–Liouville problem with a fractal indefinite weight”, Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007), 1350–1355; Comput. Math. Math. Phys., 47:8 (2007), 1295–1300
Linking options:
https://www.mathnet.ru/eng/zvmmf263 https://www.mathnet.ru/eng/zvmmf/v47/i8/p1350
|
|