Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1998, Volume 38, Number 2, Pages 239–246 (Mi zvmmf1944)  

High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems

R. Z. Dautov

Kazan State University
References:
Abstract: A suitable post-processing technique in combined with a finite element approximations to the obstacle problems. If the coincidence set is an interior star-like domain with analytical boundary $F$, we define discrete free boundary thus that it is easily computable and converges in distance to $F$ with a rate $\varepsilon(h)\ln^3(1/h)$, $\varepsilon(h)=h|u-u_k|_{H^1}+\|u-u_h\|_{L_2}$. Our present analysis does not rest on the discrete maximum principle.
Received: 15.05.1996
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: Primary 65K10; Secondary 49J40, 49M15
Language: English
Citation: R. Z. Dautov, “High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems”, Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998), 239–246; Comput. Math. Math. Phys., 38:2 (1998), 230–237
Citation in format AMSBIB
\Bibitem{Dau98}
\by R.~Z.~Dautov
\paper High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 2
\pages 239--246
\mathnet{http://mi.mathnet.ru/zvmmf1944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1609060}
\zmath{https://zbmath.org/?q=an:0951.65062}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 2
\pages 230--237
Linking options:
  • https://www.mathnet.ru/eng/zvmmf1944
  • https://www.mathnet.ru/eng/zvmmf/v38/i2/p239
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :95
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024