Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 3, Pages 387–396 (Mi zvmmf165)  

This article is cited in 16 scientific papers (total in 16 papers)

Projection onto polyhedra in outer representation

E. A. Nurminski

Institute for Automation and Control Processes, Far East Division, Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041, Russia
References:
Abstract: The projection of the origin onto an $n$-dimensional polyhedron defined by a system of $m$ inequalities is reduced to a sequence of projection problems onto a one-parameter family of shifts of a polyhedron with at most $m+1$ vertices in $n+1$ dimensions. The problem under study is transformed into the projection onto a convex polyhedral cone with m extreme rays, which considerably simplifies the solution to an equivalent problem and reduces it to a single projection operation. Numerical results obtained for random polyhedra of high dimensions are presented.
Key words: orthogonal projection, linear system of inequalities, least norm vector.
Received: 11.04.2007
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 3, Pages 367–375
DOI: https://doi.org/10.1007/s11470-008-3004-0
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: E. A. Nurminski, “Projection onto polyhedra in outer representation”, Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008), 387–396; Comput. Math. Math. Phys., 48:3 (2008), 367–375
Citation in format AMSBIB
\Bibitem{Nur08}
\by E.~A.~Nurminski
\paper Projection onto polyhedra in outer representation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 3
\pages 387--396
\mathnet{http://mi.mathnet.ru/zvmmf165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2426496}
\zmath{https://zbmath.org/?q=an:05282430}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 3
\pages 367--375
\crossref{https://doi.org/10.1007/s11470-008-3004-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262333200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449099638}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf165
  • https://www.mathnet.ru/eng/zvmmf/v48/i3/p387
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :156
    References:61
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024