Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 5, Pages 763–778 (Mi zvmmf135)  

This article is cited in 9 scientific papers (total in 9 papers)

The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies

G. K. Kamenev

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
References:
Abstract: The convergence rate at the initial stage is analyzed for a previously proposed class of asymptotically optimal adaptive methods for polyhedral approximation of convex bodies. Based on the results, the initial convergence rate of these methods can be evaluated for arbitrary bodies (including the case of polyhedral approximation of polytopes) and the resources sufficient for achieving optimal asymptotic properties can be estimated.
Key words: convex body, polyhedral approximation, algorithm, approximation method, complexity bound.
Received: 02.07.2007
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 5, Pages 724–738
DOI: https://doi.org/10.1134/S0965542508050035
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008), 763–778; Comput. Math. Math. Phys., 48:5 (2008), 724–738
Citation in format AMSBIB
\Bibitem{Kam08}
\by G.~K.~Kamenev
\paper The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 5
\pages 763--778
\mathnet{http://mi.mathnet.ru/zvmmf135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2433638}
\zmath{https://zbmath.org/?q=an:1164.90424}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 5
\pages 724--738
\crossref{https://doi.org/10.1134/S0965542508050035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262334100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44149084939}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf135
  • https://www.mathnet.ru/eng/zvmmf/v48/i5/p763
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024