Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 4, Pages 575–586
DOI: https://doi.org/10.31857/S0044466924040016
(Mi zvmmf11728)
 

Optimal control

Stochastic gradient descent with preconditioned Polyak step-size

F. Abdukhakimov, C. Xiang, D. Kamzolov, M. Takáč

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
Abstract: Stochastic Gradient Descent (SGD) is one of the many iterative optimization methods that are widely used in solving machine learning problems. These methods display valuable properties and attract researchers and industrial machine learning engineers with their simplicity. However, one of the weaknesses of this type of methods is the necessity to tune learning rate (step-size) for every loss function and dataset combination to solve an optimization problem and get an efficient performance in a given time budget. Stochastic Gradient Descent with Polyak Step-size (SPS) is a method that offers an update rule that alleviates the need of fine-tuning the learning rate of an optimizer. In this paper, we propose an extension of SPS that employs preconditioning techniques, such as Hutchinson’s method, Adam, and AdaGrad, to improve its performance on badly scaled and/or ill-conditioned datasets.
Key words: machine learning, optimization, adaptive step-size, Polyak step-size, preconditioning.
Received: 02.11.2023
Revised: 16.12.2023
Accepted: 20.12.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 4, Pages 621–634
DOI: https://doi.org/10.1134/S0965542524700052
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: F. Abdukhakimov, C. Xiang, D. Kamzolov, M. Takáč, “Stochastic gradient descent with preconditioned Polyak step-size”, Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024), 575–586; Comput. Math. Math. Phys., 64:4 (2024), 621–634
Citation in format AMSBIB
\Bibitem{AbdXiaKam24}
\by F.~Abdukhakimov, C.~Xiang, D.~Kamzolov, M.~Tak\'a{\v{c}}
\paper Stochastic gradient descent with preconditioned Polyak step-size
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 4
\pages 575--586
\mathnet{http://mi.mathnet.ru/zvmmf11728}
\crossref{https://doi.org/10.31857/S0044466924040016}
\elib{https://elibrary.ru/item.asp?id=74490702}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 4
\pages 621--634
\crossref{https://doi.org/10.1134/S0965542524700052}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11728
  • https://www.mathnet.ru/eng/zvmmf/v64/i4/p575
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024