Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 2, Pages 364–386
DOI: https://doi.org/10.31857/S0044466924020136
(Mi zvmmf11710)
 

Mathematical physics

Algorithm for solving the four-wave kinetic equation in problems of wave turbulence

B. V. Semisalovabc, S. B. Medvedevbc, M. P. Fedorukbc, S. V. Nazarenkod

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
c Novosibirsk State University, 630090, Novosibirsk, Russia
d Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI),17 rue Julien Lauprêtre 06200 Nice, France
Abstract: We propose the method for numerical solution of four-wave kinetic equations that arise in the wave turbulence (weak turbulence) theory when describing a homogeneous isotropic interaction of waves. To calculate the collision integral in the right-hand side of equation, the cubature formulas of high rate of convergence are developed, which allow for adaptation of the algorithm to the singularities of the solutions and of the integral kernels. The convergence tests in the problems of integration arising from real applications are done. To take into account the multi-scale nature of turbulence problems in our algorithm, rational approximations of the solutions and a new time marching scheme are implemented and tested. The efficiency of the developed algorithm is demonstrated by modelling the inverse cascade of Bose gas particles during the formation of a Bose–Einstein condensate.
Key words: wave turbulence, kinetic equation, nonlinear interaction of waves, calculation of collision integral, singular point, cubature formula, exponential convergence, rational approximation, adaptive method, collocation method, relaxation method, nonlinear Schrödinger equation, Bose–Einstein condensation, deep-water waves.
Funding agency Grant number
Russian Science Foundation 22-11-00287
This work was supported by the Russian Science Foundation (agreement no. 22-11-00287).
Received: 29.06.2023
Revised: 15.09.2023
Accepted: 20.10.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 2, Pages 340–361
DOI: https://doi.org/10.1134/S0965542524020118
Bibliographic databases:
Document Type: Article
UDC: 519.642.2, 532.59
Language: Russian
Citation: B. V. Semisalov, S. B. Medvedev, M. P. Fedoruk, S. V. Nazarenko, “Algorithm for solving the four-wave kinetic equation in problems of wave turbulence”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 364–386; Comput. Math. Math. Phys., 64:2 (2024), 340–361
Citation in format AMSBIB
\Bibitem{SemMedFed24}
\by B.~V.~Semisalov, S.~B.~Medvedev, M.~P.~Fedoruk, S.~V.~Nazarenko
\paper Algorithm for solving the four-wave kinetic equation in problems of wave turbulence
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 2
\pages 364--386
\mathnet{http://mi.mathnet.ru/zvmmf11710}
\crossref{https://doi.org/10.31857/S0044466924020136}
\elib{https://elibrary.ru/item.asp?id=71544534}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 2
\pages 340--361
\crossref{https://doi.org/10.1134/S0965542524020118}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11710
  • https://www.mathnet.ru/eng/zvmmf/v64/i2/p364
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025