Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 2, Pages 283–303
DOI: https://doi.org/10.31857/S0044466924020081
(Mi zvmmf11705)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Solution to a two-dimensional nonlinear parabolic heat equation subject to a boundary condition specified on a moving manifold

A. L. Kazakova, O. A. Nefedovab, L. F. Spevakb

a Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, Russia
b Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 620049, Yekaterinburg, Russia
Citations (1)
Abstract: This paper is devoted to the study of a degenerating parabolic heat equation with nonlinearities of a general type in the presence of a source (sink) in the case of two spatial variables. The problem of initiating a heat wave propagating over a cold (zero) background with a finite velocity and a boundary condition specified on a moving manifold–a closed line–is considered. For this problem, a new existence and uniqueness theorem is proved, a numerical algorithm for constructing a solution based on the boundary element method, collocation method, and difference time approximation is proposed; a special change of variables of the hodograph-type transformation is used. New exact solutions to this equation in the case of power nonlinearities are found. A numerical algorithm is implemented, and a numerical experiment is carried out. A comparison of the constructed numerical solutions with exact ones (found both in this paper and earlier) showed good agreement. The numerical convergence in the time step and number of collocation points is proved.
Key words: nonlinear parabolic heat conduction equation, degeneracy, existence and uniqueness theorem, exact solution, numerical solution, boundary element method, collocation method, radial basis functions.
Received: 07.08.2023
Revised: 20.09.2023
Accepted: 14.10.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 2, Pages 266–284
DOI: https://doi.org/10.1134/S0965542524020052
Bibliographic databases:
Document Type: Article
UDC: 519.633.6+517.956.45
Language: Russian
Citation: A. L. Kazakov, O. A. Nefedova, L. F. Spevak, “Solution to a two-dimensional nonlinear parabolic heat equation subject to a boundary condition specified on a moving manifold”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 283–303; Comput. Math. Math. Phys., 64:2 (2024), 266–284
Citation in format AMSBIB
\Bibitem{KazNefSpe24}
\by A.~L.~Kazakov, O.~A.~Nefedova, L.~F.~Spevak
\paper Solution to a two-dimensional nonlinear parabolic heat equation subject to a boundary condition specified on a moving manifold
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 2
\pages 283--303
\mathnet{http://mi.mathnet.ru/zvmmf11705}
\crossref{https://doi.org/10.31857/S0044466924020081}
\elib{https://elibrary.ru/item.asp?id=71544523}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 2
\pages 266--284
\crossref{https://doi.org/10.1134/S0965542524020052}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11705
  • https://www.mathnet.ru/eng/zvmmf/v64/i2/p283
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025