Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 12, Pages 2025–2034
DOI: https://doi.org/10.31857/S0044466923120050
(Mi zvmmf11668)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Study of nonclassical transport by applying numerical methods for solving the Boltzmann equation

V. V. Aristov, I. V. Voronich, S. A. Zabelok

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119333, Moscow, Russia
Citations (1)
Abstract: This paper overviews the state of the art in the study of nonequilibrium gas flows with nonclassical transport, in which the Stokes and Fourier laws are violated (and, accordingly, the Chapman–Enskog method is inapplicable). For a reliable validation of anomalous transport effects, we use computational methods of different nature: the direct solution of the Boltzmann equation and direct simulation Monte Carlo. Nonclassical anomalous transport is manifested on scales of 5–10 mean free paths, which confirms the fact that a highly nonequilibrium flow is a prerequisite for the detection of the effects. Two-dimensional flow problems are considered, namely, the supersonic flow over a flat plate in the transient regime and the supersonic flow through membranes (lattices), where the flow behind the lattice corresponds to the spatially nonuniform relaxation problem. In this region, nonequilibrium distributions demonstrating anomalous transport are formed. The relationship of the effect with the second law of thermodynamics is discussed, the possibilities of experimental verification are considered, and the prospects of creating new microdevices on this basis are outlined.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2020-799
This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-799.
Received: 11.06.2023
Revised: 15.07.2023
Accepted: 22.08.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 12, Pages 2306–2314
DOI: https://doi.org/10.1134/S0965542523120047
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: V. V. Aristov, I. V. Voronich, S. A. Zabelok, “Study of nonclassical transport by applying numerical methods for solving the Boltzmann equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023), 2025–2034; Comput. Math. Math. Phys., 63:12 (2023), 2306–2314
Citation in format AMSBIB
\Bibitem{AriVorZab23}
\by V.~V.~Aristov, I.~V.~Voronich, S.~A.~Zabelok
\paper Study of nonclassical transport by applying numerical methods for solving the Boltzmann equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 12
\pages 2025--2034
\mathnet{http://mi.mathnet.ru/zvmmf11668}
\crossref{https://doi.org/10.31857/S0044466923120050}
\elib{https://elibrary.ru/item.asp?id=54912958}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 12
\pages 2306--2314
\crossref{https://doi.org/10.1134/S0965542523120047}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11668
  • https://www.mathnet.ru/eng/zvmmf/v63/i12/p2025
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024