Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 12, Pages 2016–2024
DOI: https://doi.org/10.31857/S0044466923120153
(Mi zvmmf11667)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Nonclassical heat transfer in a microchannel and a problem for lattice Boltzmann equations

O. V. Ilyin

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119333, Moscow, Russia
Citations (1)
Abstract: A one-dimensional problem of heat transfer in a bounded domain (microchannel) filled with rarefied gas is considered. Two molecular beams enter the domain from the left boundary, the velocities of the particles are equal in the each beam. The diffuse reflection condition is set on the right boundary. It is shown using the Shakhov kinetic model that by varying the ratio of velocities in the molecular beams it is possible to obtain a heat flux of various magnitudes and signs such that the te-mperatures on the left and right boundaries are equal or the temperature gradient in the boundary layer has the same sign as the heat flux. This problem is related to the problem of constructing lattice Boltzmann equations with four velocities, which can reproduce the first Maxwell half-moments. It is shown that in this case the optimal ratio of discrete velocities is 1 : 4.
Key words: lattice Boltzmann equations, nonequilibrium flows.
Received: 28.03.2023
Revised: 30.04.2023
Accepted: 22.08.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 12, Pages 2297–2305
DOI: https://doi.org/10.1134/S0965542523120126
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: O. V. Ilyin, “Nonclassical heat transfer in a microchannel and a problem for lattice Boltzmann equations”, Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023), 2016–2024; Comput. Math. Math. Phys., 63:12 (2023), 2297–2305
Citation in format AMSBIB
\Bibitem{Ily23}
\by O.~V.~Ilyin
\paper Nonclassical heat transfer in a microchannel and a problem for lattice Boltzmann equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 12
\pages 2016--2024
\mathnet{http://mi.mathnet.ru/zvmmf11667}
\crossref{https://doi.org/10.31857/S0044466923120153}
\elib{https://elibrary.ru/item.asp?id=54912957}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 12
\pages 2297--2305
\crossref{https://doi.org/10.1134/S0965542523120126}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11667
  • https://www.mathnet.ru/eng/zvmmf/v63/i12/p2016
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024