Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 11, Page 1923
DOI: https://doi.org/10.31857/S0044466923110182
(Mi zvmmf11656)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

On numerical beamforming for correlated dipole type sources

T. K. Kozubskayaa, G. M. Plaksina, I. L. Sofronovab

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia
b Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow oblast, Russia
Citations (1)
Abstract: A numerical beamforming method for correlated dipole-type sources in the frequency domain is developed. The typical configuration of the location of acoustic field sources and microphones is considered to analyze the noise generated under an aircraft flying in turbulent flow regimes. Three problems of numerical beamforming are studied, allowing one to take into account a priori information about connections between the components of the dipole function at a point. They differ in the number of real functions to be found: six (no connection), four (components are in phase) and two (the direction of the dipole moment is known). The discretization parameters of source function grids and microphones are estimated to ensure stable matrix inversion in numerical beamforming algorithms. The issues of nonuniqueness of solutions for the tangent components of the dipole function in the first and second problems are identified and discussed; for the third problem such an issue does not arise.
Key words: numerical beamforming, correlated source, dipole, nonuniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-330
The publication is prepared in the implementation of the program for the creation and development of the World-Class Research Center “Supersonic” for 2020-2050 funded by the Ministry of Science and Higher Education of the Russian Federation (Grant agreement of April 25, 2022, no. 075-15-2022-330).
Received: 10.06.2023
Revised: 10.06.2023
Accepted: 25.07.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 11, Pages 2162–2175
DOI: https://doi.org/10.1134/S0965542523110131
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: T. K. Kozubskaya, G. M. Plaksin, I. L. Sofronov, “On numerical beamforming for correlated dipole type sources”, Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023), 1923; Comput. Math. Math. Phys., 63:11 (2023), 2162–2175
Citation in format AMSBIB
\Bibitem{KozPlaSof23}
\by T.~K.~Kozubskaya, G.~M.~Plaksin, I.~L.~Sofronov
\paper On numerical beamforming for correlated dipole type sources
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 11
\pages 1923
\mathnet{http://mi.mathnet.ru/zvmmf11656}
\crossref{https://doi.org/10.31857/S0044466923110182}
\elib{https://elibrary.ru/item.asp?id=54720599}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 11
\pages 2162--2175
\crossref{https://doi.org/10.1134/S0965542523110131}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11656
  • https://www.mathnet.ru/eng/zvmmf/v63/i11/p1923
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025