Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 10, Pages 1687–1705
DOI: https://doi.org/10.31857/S0044466923100071
(Mi zvmmf11636)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical physics

Grid convergence analysis of grid-characteristic method on Chimera meshes in ultrasonic nondestructive testing of railroad rail

A. A. Kozhemyachenkoab, A. V. Favorskayaab

a Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow oblast, Russia
b Scientific Research Institute for System Analysis, Russian Academy of Sciences, 117218, Moscow, Russia
Citations (2)
Abstract: A three-dimensional direct problem of ultrasonic nondestructive testing of a railroad rail treated as a linear elastic medium is solved by applying a grid-characteristic method on curved structured Chimera and Cartesian background meshes. The algorithm involves mutual interpolation between Chimera and Cartesian meshes that takes into account the features of the transition from curved to Cartesian meshes in three-dimensional space. An analytical algorithm for generating Chimera meshes is proposed. The convergence of the developed numerical algorithms under mesh refinement in space is analyzed. A comparative analysis of the full-wave fields of the velocity modulus representing the propagation of a perturbation from its source is presented.
Key words: numerical simulation, grid-characteristic method, Chimera meshes, nondestructive testing, ultrasonic method, rail.
Funding agency Grant number
Russian Science Foundation 20-71-10028
This work was supported by the Russian Science Foundation, project no. 20-71-10028.
Received: 27.05.2023
Revised: 27.05.2023
Accepted: 26.06.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 10, Pages 1886–1903
DOI: https://doi.org/10.1134/S0965542523100056
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. A. Kozhemyachenko, A. V. Favorskaya, “Grid convergence analysis of grid-characteristic method on Chimera meshes in ultrasonic nondestructive testing of railroad rail”, Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023), 1687–1705; Comput. Math. Math. Phys., 63:10 (2023), 1886–1903
Citation in format AMSBIB
\Bibitem{KozFav23}
\by A.~A.~Kozhemyachenko, A.~V.~Favorskaya
\paper Grid convergence analysis of grid-characteristic method on Chimera meshes in ultrasonic nondestructive testing of railroad rail
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 10
\pages 1687--1705
\mathnet{http://mi.mathnet.ru/zvmmf11636}
\crossref{https://doi.org/10.31857/S0044466923100071}
\elib{https://elibrary.ru/item.asp?id=54648798}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 10
\pages 1886--1903
\crossref{https://doi.org/10.1134/S0965542523100056}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11636
  • https://www.mathnet.ru/eng/zvmmf/v63/i10/p1687
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024