Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 10, Pages 1660–1673
DOI: https://doi.org/10.31857/S0044466923100162
(Mi zvmmf11634)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Numerical and analytical investigation of shock wave processes in elastoplastic media

L. Wangab, I. S. Menshovabc, A. A. Serezhkinbc

a Lomonosov Moscow State University, 119991, Moscow, Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
c Dukhov Automatics Research Institute, 127030, Moscow, Russia
Citations (1)
Abstract: The Wilkins model for an elastoplastic medium is considered. A theoretical analysis of discontinuous solutions under the assumption of one-dimensional uniaxial strain is performed. In this approximation, the material equations for the deviator stress tensor components are integrated exactly, and only the conservative part of the governing equations remains, which makes it possible to derive a class of exact analytical solutions for the model. To solve the full nonconservative system of equations (without assuming the uniaxial strain), a Godunov-type numerical method is developed, which uses an approximate Riemann solver based on integrating the system of equations along a path in the phase space. A special choice of path is proposed that reduces the two-wave HLL approximation to the solution of a linear equations. Numerical and exact analytical solutions are compared for a number of problems with various regimes of shockwave processes.
Key words: elastoplastic medium, Wilkins model, path-conservative Godunov scheme.
Funding agency Grant number
Russian Science Foundation 23-11-00218
This work was supported by the Russian Science Foundation, project no. 23-11-00218.
Received: 16.06.2023
Revised: 16.06.2023
Accepted: 26.06.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 10, Pages 1860–1873
DOI: https://doi.org/10.1134/S0965542523100135
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: L. Wang, I. S. Menshov, A. A. Serezhkin, “Numerical and analytical investigation of shock wave processes in elastoplastic media”, Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023), 1660–1673; Comput. Math. Math. Phys., 63:10 (2023), 1860–1873
Citation in format AMSBIB
\Bibitem{WanMenSer23}
\by L.~Wang, I.~S.~Menshov, A.~A.~Serezhkin
\paper Numerical and analytical investigation of shock wave processes in elastoplastic media
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 10
\pages 1660--1673
\mathnet{http://mi.mathnet.ru/zvmmf11634}
\crossref{https://doi.org/10.31857/S0044466923100162}
\elib{https://elibrary.ru/item.asp?id=54648792}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 10
\pages 1860--1873
\crossref{https://doi.org/10.1134/S0965542523100135}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11634
  • https://www.mathnet.ru/eng/zvmmf/v63/i10/p1660
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024