Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 10, Pages 1637–1647
DOI: https://doi.org/10.31857/S0044466923100198
(Mi zvmmf11632)
 

Partial Differential Equations

Determining the spectrum of eigenvalues and eigenfunctions for the Bernoulli–Euler equation with variable coefficients by the Peano method

D. D. Zakharov, I. S. Nikitin

Institute of Computer Aided Design, Russian Academy of Sciences, 123056, Moscow, Russia
Abstract: The paper considers the problem of determining the natural frequencies and eigenwaves of transverse vibrations for the Bernoulli–Euler equation with variable coefficients. Such problems arise both in the case of complex geometry of a vibrating solid and in the case of functionally graded materials or the accumulation of damage in a classical elastic material. Solutions of boundary value problems are constructed using the expansion in Peano series. Under broad assumptions, the uniform convergence of Peano series is shown and estimates of the residual terms are obtained. Examples of the numerical implementation of the proposed procedure are given for bending vibrations of a rod with certain parameters of a variable cross section (geometric heterogeneity) and elastic modulus distribution (physical heterogeneity). Numerical examples are focused on assessing the geometric and elastic properties of samples in an experimental study of the fatigue strength of alloys during high-frequency cyclic tests based on the general principle of point resonant loading. The method proposed for solving problems of resonant vibrations for the Bernoulli–Euler equation can be used in the design of new promising cyclic test schemes and mathematical modeling of fatigue failure processes under high-frequency resonant vibrations.
Key words: transverse vibrations, Bernoulli–Euler equation, variable cross section, functionally graded material, Peano series, frequency spectrum, eigenmodes, high-frequency cyclic tests.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
This work was carried out as part of the State Assignment for the Institute of Computer Aided Design, Russian Academy of Sciences.
Received: 27.05.2023
Revised: 27.05.2023
Accepted: 26.06.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 10, Pages 1837–1847
DOI: https://doi.org/10.1134/S0965542523100159
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: D. D. Zakharov, I. S. Nikitin, “Determining the spectrum of eigenvalues and eigenfunctions for the Bernoulli–Euler equation with variable coefficients by the Peano method”, Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023), 1637–1647; Comput. Math. Math. Phys., 63:10 (2023), 1837–1847
Citation in format AMSBIB
\Bibitem{ZakNik23}
\by D.~D.~Zakharov, I.~S.~Nikitin
\paper Determining the spectrum of eigenvalues and eigenfunctions for the Bernoulli--Euler equation with variable coefficients by the Peano method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 10
\pages 1637--1647
\mathnet{http://mi.mathnet.ru/zvmmf11632}
\crossref{https://doi.org/10.31857/S0044466923100198}
\elib{https://elibrary.ru/item.asp?id=54648787}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 10
\pages 1837--1847
\crossref{https://doi.org/10.1134/S0965542523100159}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11632
  • https://www.mathnet.ru/eng/zvmmf/v63/i10/p1637
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024