Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 10, Page 1616
DOI: https://doi.org/10.31857/S0044466923100022
(Mi zvmmf11630)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary differential equations

A novel uniform numerical approach to solve singularly perturbed Volterra integrodifferential equation

M. Cakira, E. Cimena

Department of Mathematics, Van Yüzüncü Yıl University, Van, Turkey
Citations (1)
Abstract: In this paper, the initial value problem for the second order singularly perturbed Volterra integro-differential equation is considered. To solve this problem, a finite difference scheme is constructed, which based on the method of integral identities using interpolating quadrature rules with remainder terms in integral form. As a result of the error analysis, it is proved that the method is first-order convergent uniformly with respect to the perturbation parameter in the discrete maximum norm. Numerical experiments supporting the theoretical results are also presented.
Key words: finite difference method, singular perturbation, uniform convergence, Volterra integro-differential equation.
Received: 01.02.2023
Revised: 06.06.2023
Accepted: 26.06.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 10, Pages 1800–1816
DOI: https://doi.org/10.1134/S0965542523100020
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: English
Citation: M. Cakira, E. Cimena, “A novel uniform numerical approach to solve singularly perturbed Volterra integrodifferential equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023), 1616; Comput. Math. Math. Phys., 63:10 (2023), 1800–1816
Citation in format AMSBIB
\Bibitem{CakCim23}
\by M.~Cakira, E.~Cimena
\paper A novel uniform numerical approach to solve singularly perturbed Volterra integrodifferential equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 10
\pages 1616
\mathnet{http://mi.mathnet.ru/zvmmf11630}
\crossref{https://doi.org/10.31857/S0044466923100022}
\elib{https://elibrary.ru/item.asp?id=54648778}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 10
\pages 1800--1816
\crossref{https://doi.org/10.1134/S0965542523100020}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11630
  • https://www.mathnet.ru/eng/zvmmf/v63/i10/p1616
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024