Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 9, Pages 1524–1530
DOI: https://doi.org/10.31857/S0044466923090041
(Mi zvmmf11616)
 

Partial Differential Equations

Interaction of boundary singular points in an elliptic boundary value problem

A. M. Bogovskiy

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Abstract: The paper continues the construction of the $L_p$-theory of elliptic Dirichlet and Neumann boundary value problems with discontinuous piecewise constant coefficients in divergent form for an unbounded domain $\Omega\subset\mathbb{R}^2$ with a piecewise $C^1$ smooth noncompact Lipschitz boundary and $C^1$ smooth discontinuity lines of the coefficients. An earlier constructed $L_p$-theory is generalized to the case of different smallest eigenvalues corresponding to a finite and an infinite singular point, and the effect of their interaction is further studied in the class of functions with first derivatives from $L_p(\Omega)$ in the entire range of the exponent $p\in(1,\infty)$.
Key words: elliptic equation in divergent form, discontinuous piecewise constant coefficient, unbounded domain, piecewise smooth noncompact Lipschitz boundary, smooth discontinuity lines of coefficient, Dirichlet problem, Neumann problem, weak solution with first derivatives from $L_p$, $L_p$-theory, interaction of singularities.
Received: 20.02.2023
Revised: 03.05.2023
Accepted: 29.05.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 9, Pages 1664–1670
DOI: https://doi.org/10.1134/S096554252309004X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Bogovskiy, “Interaction of boundary singular points in an elliptic boundary value problem”, Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023), 1524–1530; Comput. Math. Math. Phys., 63:9 (2023), 1664–1670
Citation in format AMSBIB
\Bibitem{Bog23}
\by A.~M.~Bogovskiy
\paper Interaction of boundary singular points in an elliptic boundary value problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 9
\pages 1524--1530
\mathnet{http://mi.mathnet.ru/zvmmf11616}
\crossref{https://doi.org/10.31857/S0044466923090041}
\elib{https://elibrary.ru/item.asp?id=54313684}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 9
\pages 1664--1670
\crossref{https://doi.org/10.1134/S096554252309004X}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11616
  • https://www.mathnet.ru/eng/zvmmf/v63/i9/p1524
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024