Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 9, Pages 1446–1457
DOI: https://doi.org/10.31857/S0044466923090119
(Mi zvmmf11613)
 

This article is cited in 6 scientific papers (total in 6 papers)

General numerical methods

On the uniqueness of solution to systems of linear algebraic equations to which the inverse problems of gravimetry and magnetometry are reduced: A regional variant

I. I. Kolotova, D. V. Lukyanenkoa, I. È. Stepanovaab, A. V. Shchepetilova, A. G. Yagolaa

a Faculty of Physics, Moscow State University, 119992, Moscow, Russia
b Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 123995, Moscow, Russia
Citations (6)
Abstract: Conditions for the unique solvability of systems of linear algebraic equations to which many inverse problems of gravitational and magnetic exploration are reduced are considered. The mathematical statements of inverse problems take into account the sphericity of the Earth.
Key words: solvability, singular systems, integral representations.
Funding agency Grant number
Russian Science Foundation 23-41-00002
This work was supported by the Russian Science Foundation, project no. 23-41-00002.
Received: 06.02.2023
Revised: 06.02.2023
Accepted: 29.05.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 9, Pages 1588–1599
DOI: https://doi.org/10.1134/S0965542523090117
Bibliographic databases:
Document Type: Article
UDC: 519.612
Language: Russian
Citation: I. I. Kolotov, D. V. Lukyanenko, I. È. Stepanova, A. V. Shchepetilov, A. G. Yagola, “On the uniqueness of solution to systems of linear algebraic equations to which the inverse problems of gravimetry and magnetometry are reduced: A regional variant”, Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023), 1446–1457; Comput. Math. Math. Phys., 63:9 (2023), 1588–1599
Citation in format AMSBIB
\Bibitem{KolLukSte23}
\by I.~I.~Kolotov, D.~V.~Lukyanenko, I.~\`E.~Stepanova, A.~V.~Shchepetilov, A.~G.~Yagola
\paper On the uniqueness of solution to systems of linear algebraic equations to which the inverse problems of gravimetry and magnetometry are reduced: A regional variant
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 9
\pages 1446--1457
\mathnet{http://mi.mathnet.ru/zvmmf11613}
\crossref{https://doi.org/10.31857/S0044466923090119}
\elib{https://elibrary.ru/item.asp?id=54313681}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 9
\pages 1588--1599
\crossref{https://doi.org/10.1134/S0965542523090117}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11613
  • https://www.mathnet.ru/eng/zvmmf/v63/i9/p1446
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024