Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 9, Pages 1415–1427
DOI: https://doi.org/10.31857/S0044466923090090
(Mi zvmmf11610)
 

General numerical methods

Constructive algorithm to vectorize $P\otimes P$ product for symmetric matrix $P$

A. I. Glushchenko, K. A. Lastochkin

V.A. Trapeznikov Institute of Control Sciences of RAS, 117997, Moscow, Russia
Abstract: A constructive algorithm to compute elimination $\bar L$ and duplication $\bar D $ matrices for the operation of $P\otimes P$ vectorization when $P=P^{\mathrm{T}}$ is proposed. The matrix $\bar L$, obtained according to such algorithm, allows one to form a vector that contains only unique elements of the mentioned Kronecker product. In its turn, the matrix $\bar D$ is for the inverse transformation. A software implementation of the procedure to compute the matrices $\bar L$ and $\bar D$ is developed. On the basis of the mentioned results, a new operation $\mathrm{vecu}(.)$ is defined for $P\otimes P$ in case $P=P^{\mathrm{T}}$ and its properties are studied. The difference and advantages of the developed operation in comparison with the known ones $\mathrm{vec}(.)$ and $\mathrm{vech}(.)$ $\mathrm{vecd}(.)$ in case of vectorization of $P\otimes P$ when $P=P^{\mathrm{T}}$ are demonstrated. Using parameterization of the algebraic Riccati equation as an example, the efficiency of the operation $\mathrm{vecu}(.)$ to reduce overparameterization of the unknown parameter identification problem is shown.
Key words: vectorization, elimination matrix, duplication matrix, Kronecker product, matrix unique elements, dimensionality reduction, overparameterization, Riccati equation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation МД-1787.2022.4
This research was supported in part by the Grants Council of the President of the Russian Federation, project no. MD-1787.2022.4.
Received: 20.02.2022
Revised: 20.02.2023
Accepted: 29.05.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 9, Pages 1559–1570
DOI: https://doi.org/10.1134/S0965542523090099
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: A. I. Glushchenko, K. A. Lastochkin, “Constructive algorithm to vectorize $P\otimes P$ product for symmetric matrix $P$”, Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023), 1415–1427; Comput. Math. Math. Phys., 63:9 (2023), 1559–1570
Citation in format AMSBIB
\Bibitem{GluLas23}
\by A.~I.~Glushchenko, K.~A.~Lastochkin
\paper Constructive algorithm to vectorize $P\otimes P$ product for symmetric matrix $P$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 9
\pages 1415--1427
\mathnet{http://mi.mathnet.ru/zvmmf11610}
\crossref{https://doi.org/10.31857/S0044466923090090}
\elib{https://elibrary.ru/item.asp?id=54313678}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 9
\pages 1559--1570
\crossref{https://doi.org/10.1134/S0965542523090099}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11610
  • https://www.mathnet.ru/eng/zvmmf/v63/i9/p1415
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024