Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 8, Pages 1332–1342
DOI: https://doi.org/10.31857/S0044466923080148
(Mi zvmmf11603)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Analogue of Kellogg’s theorem for piecewise Lyapunov domains

A. P. Soldatovabc

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119333, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c National Research University "Moscow Power Engineering Institute", 111250, Moscow, Russia
Citations (1)
Abstract: In weighted Hölder spaces, classes of smooth arcs and piecewise smooth contours are introduced that are invariant under power mappings. The boundary properties of conformal mappings are described in terms of these classes by analogy with Kellogg’s classical theorem.
Key words: conformal mapping, piecewise Lyapunov contour, radial arc, weighted Hölder space.
Received: 16.01.2023
Revised: 16.01.2023
Accepted: 28.04.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 8, Pages 1466–1475
DOI: https://doi.org/10.1134/S0965542523080146
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. P. Soldatov, “Analogue of Kellogg’s theorem for piecewise Lyapunov domains”, Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023), 1332–1342; Comput. Math. Math. Phys., 63:8 (2023), 1466–1475
Citation in format AMSBIB
\Bibitem{Sol23}
\by A.~P.~Soldatov
\paper Analogue of Kellogg’s theorem for piecewise Lyapunov domains
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 8
\pages 1332--1342
\mathnet{http://mi.mathnet.ru/zvmmf11603}
\crossref{https://doi.org/10.31857/S0044466923080148}
\elib{https://elibrary.ru/item.asp?id=54270661}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 8
\pages 1466--1475
\crossref{https://doi.org/10.1134/S0965542523080146}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11603
  • https://www.mathnet.ru/eng/zvmmf/v63/i8/p1332
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024