Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 8, Pages 1317–1331
DOI: https://doi.org/10.31857/S0044466923080094
(Mi zvmmf11602)
 

This article is cited in 8 scientific papers (total in 8 papers)

Partial Differential Equations

On the uniqueness of solutions to systems of linear algebraic equations resulting from the reduction of linear inverse problems of gravimetry and magnetometry: a local case

I. I. Kolotova, D. V. Lukyanenkoa, I. É. Stepanovaab, A. G. Yagolaa

a Faculty of Physics, Lomonosov Moscow State University, 119992, Moscow, Russia
b Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123995, Moscow, Russia
Citations (8)
Abstract: The paper considers issues of unique solvability of systems of linear algebraic equations to which many inverse problems of geophysics are reduced as a result of discretization. Examples of degenerate and nondegenerate systems of different dimensions arising from the interpretation of gravity and magnetometric data are given.
Key words: degenerate systems of linear algebraic equations, integral representations, unique solvability.
Funding agency Grant number
Russian Science Foundation 23-41-00002
This work was supported by the Russian Science Foundation, project no. 23-41-00002.
Received: 06.02.2023
Revised: 19.03.2023
Accepted: 28.04.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 8, Pages 1452–1465
DOI: https://doi.org/10.1134/S0965542523080092
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: I. I. Kolotov, D. V. Lukyanenko, I. É. Stepanova, A. G. Yagola, “On the uniqueness of solutions to systems of linear algebraic equations resulting from the reduction of linear inverse problems of gravimetry and magnetometry: a local case”, Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023), 1317–1331; Comput. Math. Math. Phys., 63:8 (2023), 1452–1465
Citation in format AMSBIB
\Bibitem{KolLukSte23}
\by I.~I.~Kolotov, D.~V.~Lukyanenko, I.~\'E.~Stepanova, A.~G.~Yagola
\paper On the uniqueness of solutions to systems of linear algebraic equations resulting from the reduction of linear inverse problems of gravimetry and magnetometry: a local case
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 8
\pages 1317--1331
\mathnet{http://mi.mathnet.ru/zvmmf11602}
\crossref{https://doi.org/10.31857/S0044466923080094}
\elib{https://elibrary.ru/item.asp?id=54270660}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 8
\pages 1452--1465
\crossref{https://doi.org/10.1134/S0965542523080092}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11602
  • https://www.mathnet.ru/eng/zvmmf/v63/i8/p1317
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024