Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 7, Pages 1100–1107
DOI: https://doi.org/10.31857/S0044466923070049
(Mi zvmmf11582)
 

Optimal control

Conditional gradient method for optimization problems with a constraint in the form of the intersection of a convex smooth surface and a convex compact set

Yu. A. Chernyaev

Kazan National Research Technical University, 420111, Kazan, Tatarstan, Russia
Abstract: The conditional gradient method is generalized to nonconvex sets of constraints representing the set-theoretic intersection of a convex smooth surface and a convex compact set. Necessary optimality conditions are studied, and the convergence of the method is analyzed.
Key words: convex smooth surface, convex compact set, minimization of a smooth function, conditional gradient method.
Received: 03.10.2022
Revised: 06.02.2023
Accepted: 30.03.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 7, Pages 1191–1198
DOI: https://doi.org/10.1134/S0965542523070047
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: Yu. A. Chernyaev, “Conditional gradient method for optimization problems with a constraint in the form of the intersection of a convex smooth surface and a convex compact set”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1100–1107; Comput. Math. Math. Phys., 63:7 (2023), 1191–1198
Citation in format AMSBIB
\Bibitem{Che23}
\by Yu.~A.~Chernyaev
\paper Conditional gradient method for optimization problems with a constraint in the form of the intersection of a convex smooth surface and a convex compact set
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 7
\pages 1100--1107
\mathnet{http://mi.mathnet.ru/zvmmf11582}
\crossref{https://doi.org/10.31857/S0044466923070049}
\elib{https://elibrary.ru/item.asp?id=54238532}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 7
\pages 1191--1198
\crossref{https://doi.org/10.1134/S0965542523070047}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11582
  • https://www.mathnet.ru/eng/zvmmf/v63/i7/p1100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024