Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 6, Pages 962–978
DOI: https://doi.org/10.31857/S0044466923060066
(Mi zvmmf11570)
 

Ordinary differential equations

On singular points of linear differential-algebraic equations with perturbations in the form of integral operators

V. F. Chistyakov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Abstract: The paper consideres linear systems of ordinary differential equations of arbitrary order with a matrix identically degenerate in the domain of definition at the highest derivative of the desired vector function and with loads in the form of Volterra and Fredholm integral operators. The initial value problems are formulated using projections onto admissible sets of initial vectors. Special attention is paid to systems having singular points on the interval of integration. The concept of a singular point is formalized. Their classification in the case of differential equations is given. A number of examples illustrating the theoretical results are presented.
Key words: differential-algebraic equations, linear systems, Volterra and Fredholm operators, solution space, dimension, index, singular points.
Received: 31.08.2022
Revised: 27.11.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 6, Pages 1028–1044
DOI: https://doi.org/10.1134/S0965542523060064
Bibliographic databases:
Document Type: Article
UDC: 517.96
Language: Russian
Citation: V. F. Chistyakov, “On singular points of linear differential-algebraic equations with perturbations in the form of integral operators”, Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 962–978; Comput. Math. Math. Phys., 63:6 (2023), 1028–1044
Citation in format AMSBIB
\Bibitem{Chi23}
\by V.~F.~Chistyakov
\paper On singular points of linear differential-algebraic equations with perturbations in the form of integral operators
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 6
\pages 962--978
\mathnet{http://mi.mathnet.ru/zvmmf11570}
\crossref{https://doi.org/10.31857/S0044466923060066}
\elib{https://elibrary.ru/item.asp?id=53836698}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 6
\pages 1028--1044
\crossref{https://doi.org/10.1134/S0965542523060064}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11570
  • https://www.mathnet.ru/eng/zvmmf/v63/i6/p962
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:94
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025