Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 6, Pages 920–936
DOI: https://doi.org/10.31857/S0044466923060078
(Mi zvmmf11565)
 

Optimal control

$p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions

Yu. G. Evtushenkoab, B. Medakc, A. A. Tret'yakovacd

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119333, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow oblast, Russia
c Siedlce University, Faculty of Exact and Natural Sciences 08-110 Siedlce, Poland
d System Res. Inst., Polish Acad. Sciences, 01-447 Warsaw, Newelska, 6, Poland
Abstract: For a given boundary value problem, the existence of a solution depending continuously on the boundary conditions is analyzed. Previously, such a fact has been known only for the Cauchy problem, which is a classical result in the theory of differential equations. We prove a similar result for boundary value problems in the case when they are $p$-regular. In the general case, this result does not hold. Several implicit function theorems are proved in the degenerate case, which is a development of $p$-regularity theory concerning the existence of a solution to nonlinear differential equations. The results are illustrated by an example of a classical boundary value problem, namely, a degenerate Van der Pol equation is considered, for which the existence of a solution depending continuously on the boundary conditions of the perturbed problem is proved.
Key words: degeneration, $p$-regularity, boundary value problem, continuous dependence of solution, $p$-factor operator.
Funding agency Grant number
Russian Science Foundation 21-71-30005
This work was supported by the Russian Science Foundation, project no. 21-71-30005.
Received: 12.12.2022
Revised: 12.12.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 6, Pages 957–972
DOI: https://doi.org/10.1134/S0965542523060076
Bibliographic databases:
Document Type: Article
UDC: 519.615
Language: Russian
Citation: Yu. G. Evtushenko, B. Medak, A. A. Tret'yakov, “$p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 920–936; Comput. Math. Math. Phys., 63:6 (2023), 957–972
Citation in format AMSBIB
\Bibitem{EvtMedTre23}
\by Yu.~G.~Evtushenko, B.~Medak, A.~A.~Tret'yakov
\paper $p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 6
\pages 920--936
\mathnet{http://mi.mathnet.ru/zvmmf11565}
\crossref{https://doi.org/10.31857/S0044466923060078}
\elib{https://elibrary.ru/item.asp?id=53836688}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 6
\pages 957--972
\crossref{https://doi.org/10.1134/S0965542523060076}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11565
  • https://www.mathnet.ru/eng/zvmmf/v63/i6/p920
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024