Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Pages 803–826
DOI: https://doi.org/10.31857/S0044466923050101
(Mi zvmmf11557)
 

Mathematical physics

Data assimilation for the two-dimensional ambipolar diffusion equation in Earth’s ionosphere model

V. P. Dymnikovab, D. V. Kulyaminab, P. A. Ostaninac, V. P. Shutyaevac

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Fedorov Institute of Applied Geophysics, 129128, Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow oblast, Russia
Abstract: The problem of variational data assimilation for the INM RAS two-dimensional diffusion model of the Earth’s ionosphere F region is considered. Total integral electron contents along given paths are used as observation data. The general statement of the problem in differential form is formulated, and its solvability is analyzed. Based on a regularized statement, an iterative algorithm for solving the assimilation problem is constructed, and its convergence is demonstrated. A finite-dimensional approximation is constructed, the numerical solution of the problem is implemented, and the stability and convergence of the difference scheme are proved. The quality of the reconstruction of electron concentration fields is examined in test numerical experiments. It is shown that a weakly perturbed solution is reconstructed with acceptable accuracy for both stationary and evolutionary statements in the case of vertical and slant integration paths.
Key words: ionosphere, ambipolar diffusion, inverse problems, variational data assimilation, numerical simulation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-286
Russian Science Foundation 20-11-20057
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-286) and by the Russian Science Foundation (project no. 20-11-20057, research in Section 3).
Received: 11.08.2022
Revised: 05.10.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 845–867
DOI: https://doi.org/10.1134/S0965542523050093
Bibliographic databases:
Document Type: Article
UDC: 519.635.6
Language: Russian
Citation: V. P. Dymnikov, D. V. Kulyamin, P. A. Ostanin, V. P. Shutyaev, “Data assimilation for the two-dimensional ambipolar diffusion equation in Earth’s ionosphere model”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 803–826; Comput. Math. Math. Phys., 63:5 (2023), 845–867
Citation in format AMSBIB
\Bibitem{DymKulOst23}
\by V.~P.~Dymnikov, D.~V.~Kulyamin, P.~A.~Ostanin, V.~P.~Shutyaev
\paper Data assimilation for the two-dimensional ambipolar diffusion equation in Earth’s ionosphere model
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 803--826
\mathnet{http://mi.mathnet.ru/zvmmf11557}
\crossref{https://doi.org/10.31857/S0044466923050101}
\elib{https://elibrary.ru/item.asp?id=53738575}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 845--867
\crossref{https://doi.org/10.1134/S0965542523050093}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11557
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p803
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025