Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Pages 795–802
DOI: https://doi.org/10.31857/S0044466923050095
(Mi zvmmf11556)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical physics

Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation

A. M. Denisov

Lomonosov Moscow State University, 119999, Moscow, Russia
Citations (4)
Abstract: The paper considers an inverse problem for a singularly perturbed integro-differential heat equation, which consists in determining the boundary condition from additional information on the solution of the initial-boundary value problem. It is proved that an approximate solution of the inverse problem can be obtained by using a finite number of terms in the expansion of the solution of the initial-boundary value problem in a small parameter.
Key words: integro-differential heat equation, singular perturbation, inverse problem, approximate solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This work was supported by the Ministry of Education and Science of the Russian Federation within the program of the Moscow Center for Fundamental and Applied Mathematics (project no. 075-15-2022-284).
Received: 10.09.2022
Revised: 10.09.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 837–844
DOI: https://doi.org/10.1134/S0965542523050081
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. M. Denisov, “Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 795–802; Comput. Math. Math. Phys., 63:5 (2023), 837–844
Citation in format AMSBIB
\Bibitem{Den23}
\by A.~M.~Denisov
\paper Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 795--802
\mathnet{http://mi.mathnet.ru/zvmmf11556}
\crossref{https://doi.org/10.31857/S0044466923050095}
\elib{https://elibrary.ru/item.asp?id=53738574}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 837--844
\crossref{https://doi.org/10.1134/S0965542523050081}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11556
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p795
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024