Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Pages 778–794
DOI: https://doi.org/10.31857/S0044466923050198
(Mi zvmmf11555)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Characteristic-based volume penalization-imposed wall function method for turbulent boundary layer modeling

O. V. Vasilyev, N. S. Zhdanova

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Citations (1)
Abstract: A method to approximate near-wall boundary conditions for the compressible Reynolds-averaged Navier–Stokes equations is proposed. The differential formulation to match the external and the wall function solutions is reformulated in a form of the generalized characteristic-based volume penalization method to model the transfer of the shear stress from the outer region of the boundary layer to the wall. The exchange location is specified implicitly in terms of a localized source term in the boundary layer equation written as a function of the distance from the wall normalized by the viscous length scale. The shear stress on the wall is determined by solving an auxiliary equation for the wall-stress imposing the analytical wall function solution through the characteristic-based volume penalization method. The proposed method noticeably reduces the near-wall mesh resolution requirements without a significant modification of the numerical algorithm and completely eliminates the ill-defined explicit solution matching procedure. The developed approach is numerically implemented using the vertex-centered control volume method on structured meshes. Its effectiveness is demonstrated by solving two test problems: the two-dimensional channel flow and turbulent flow over an infinitely thin plate.
Key words: characteristic-based volume penalization, turbulent flow, Reichardt’s law of the wall, wall function method.
Funding agency Grant number
Russian Science Foundation 20-41-09018
This work was supported by the Russian Science Foundation, project no. 20-41-09018.
Received: 12.09.2022
Revised: 07.10.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 821–836
DOI: https://doi.org/10.1134/S0965542523050160
Bibliographic databases:
Document Type: Article
UDC: 532.526
Language: Russian
Citation: O. V. Vasilyev, N. S. Zhdanova, “Characteristic-based volume penalization-imposed wall function method for turbulent boundary layer modeling”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 778–794; Comput. Math. Math. Phys., 63:5 (2023), 821–836
Citation in format AMSBIB
\Bibitem{VasZhd23}
\by O.~V.~Vasilyev, N.~S.~Zhdanova
\paper Characteristic-based volume penalization-imposed wall function method for turbulent boundary layer modeling
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 778--794
\mathnet{http://mi.mathnet.ru/zvmmf11555}
\crossref{https://doi.org/10.31857/S0044466923050198}
\elib{https://elibrary.ru/item.asp?id=53738573}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 821--836
\crossref{https://doi.org/10.1134/S0965542523050160}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11555
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p778
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025