Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Pages 765–777
DOI: https://doi.org/10.31857/S0044466923050046
(Mi zvmmf11554)
 

Mathematical physics

Reconstruction of two functions in the model of vibrations of a string one end of which is placed in a moving medium

O. A. Andreyanovaa, A. Yu. Shcheglovb

a Lomonosov Moscow State University, 119991, Moscow, Russia
b MSU-FPI University in Shenzhen, Longgang District, Dayunsirchen, 518172, Shenzhen, Guangdong, China
Abstract: The paper considers an inverse problem of determining the coefficients in the model of small transverse vibrations of a homogeneous finite string one end of which is placed in a moving medium and the other is free. The vibrations are simulated by a hyperbolic equation on an interval. One boundary condition has a nonclassical form. Additional data for solving the inverse problem are the values of the solution of the forward problem with a known fixed value of the spatial argument. In the inverse problem, it is required to determine the function in the nonclassical boundary condition and a functional factor on the right-hand side of the equation. Uniqueness and existence theorems for the inverse problem are proved. For the forward problem, conditions for unique solvability are established in a form that simplifies the analysis of the inverse problem. For the numerical solution of the inverse problem, an algorithm is proposed for the stage-by-stage separate reconstruction of the sought-for functions using the method of successive approximations for integral equations.
Key words: iterative algorithm, equation for vibrations, inverse problem.
Funding agency Grant number
National Natural Science Foundation of China 12171036
Beijing Natural Science Foundation Z210001
This work was supported in part by the National Natural Science Foundation of China (no. 12171036) and the Beijing Natural Science Foundation (Key Project no. Z210001).
Received: 05.08.2022
Revised: 23.10.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 808–820
DOI: https://doi.org/10.1134/S0965542523050032
Bibliographic databases:
Document Type: Article
UDC: 519.633.6
Language: Russian
Citation: O. A. Andreyanova, A. Yu. Shcheglov, “Reconstruction of two functions in the model of vibrations of a string one end of which is placed in a moving medium”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 765–777; Comput. Math. Math. Phys., 63:5 (2023), 808–820
Citation in format AMSBIB
\Bibitem{AndShc23}
\by O.~A.~Andreyanova, A.~Yu.~Shcheglov
\paper Reconstruction of two functions in the model of vibrations of a string one end of which is placed in a moving medium
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 765--777
\mathnet{http://mi.mathnet.ru/zvmmf11554}
\crossref{https://doi.org/10.31857/S0044466923050046}
\elib{https://elibrary.ru/item.asp?id=53738571}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 808--820
\crossref{https://doi.org/10.1134/S0965542523050032}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11554
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p765
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024