Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Page 764
DOI: https://doi.org/10.31857/S0044466923050228
(Mi zvmmf11553)
 

Partial Differential Equations

Multiwave interaction solutions for a new extended equation in $(4+1)$-dimension

Yan Yanga, Yinping Liuab

a East China Normal University (ECNU), School of Mathematical Sciences, Shanghai, China
b Shanghai Key Laboratory of PMMP, Shanghai, China
Abstract: In this paper, we present a new $(4+1)$-dimensional nonlinear evolution equation. We first verify its Painlevé integrability by the WTC–Kruskal method, then multiwave interaction solutions for this new equation are investigated by different approaches. It can be seen that this equation has very rich interaction wave solutions.
Key words: integrable equation, interaction solution, $N$-soliton decomposition algorithm, inheritance solving technique.
Funding agency Grant number
National Natural Science Foundation of China 11871328
Science and Technology Commission of Shanghai Municipality 22DZ2229014
The work is supported by the National Natural Science Foundation of China (no. 11871328) and is supported in part by Science and Technology Commission of Shanghai Municipality (no. 22DZ2229014).
Received: 20.12.2022
Revised: 20.12.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 794–807
DOI: https://doi.org/10.1134/S0965542523050184
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yan Yang, Yinping Liu, “Multiwave interaction solutions for a new extended equation in $(4+1)$-dimension”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 764; Comput. Math. Math. Phys., 63:5 (2023), 794–807
Citation in format AMSBIB
\Bibitem{YanLiu23}
\by Yan~Yang, Yinping~Liu
\paper Multiwave interaction solutions for a new extended equation in $(4+1)$-dimension
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 764
\mathnet{http://mi.mathnet.ru/zvmmf11553}
\crossref{https://doi.org/10.31857/S0044466923050228}
\elib{https://elibrary.ru/item.asp?id=53738570}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 794--807
\crossref{https://doi.org/10.1134/S0965542523050184}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11553
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p764
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024