Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 5, Pages 731–638
DOI: https://doi.org/10.31857/S0044466923050058
(Mi zvmmf11549)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control

Synthesis of an optimal system with stable sliding modes

L. T. Ashchepkov

Far Eastern Federal University, 690922, Vladivostok, Russia
Citations (2)
Abstract: A method for synthesizing an optimal control that ensures the existence and stability of sliding modes for a system of nonlinear ordinary differential equations is proposed. This method uses an auxiliary optimal control problem. The solution gives a control in analytical form. It is proved that the trivial solution of the closed-loop system is Lyapunov stable. Application of the proposed method to linear and quasi-linear systems of equations is demonstrated, and an illustrative example is discussed.
Key words: system design, optimal control, sufficient optimality conditions, sliding mode, stability.
Received: 09.09.2022
Revised: 09.09.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 5, Pages 743–750
DOI: https://doi.org/10.1134/S0965542523050044
Bibliographic databases:
Document Type: Article
UDC: 519.612
Language: Russian
Citation: L. T. Ashchepkov, “Synthesis of an optimal system with stable sliding modes”, Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 731–638; Comput. Math. Math. Phys., 63:5 (2023), 743–750
Citation in format AMSBIB
\Bibitem{Ash23}
\by L.~T.~Ashchepkov
\paper Synthesis of an optimal system with stable sliding modes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 5
\pages 731--638
\mathnet{http://mi.mathnet.ru/zvmmf11549}
\crossref{https://doi.org/10.31857/S0044466923050058}
\elib{https://elibrary.ru/item.asp?id=53738566}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 5
\pages 743--750
\crossref{https://doi.org/10.1134/S0965542523050044}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11549
  • https://www.mathnet.ru/eng/zvmmf/v63/i5/p731
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024