Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 4, Pages 629–638
DOI: https://doi.org/10.31857/S0044466923040051
(Mi zvmmf11539)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Aggregation kinetics in sedimentation: Effect of diffusion of particles

N. V. Brilliantovab, R. R. Zagidullinac, S. A. Matveevcd, A. P. Smirnovc

a Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
b University of Leicester, LE1 7RH, Leicester, UK
c Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Moscow, Russia
d Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
Citations (1)
Abstract: The aggregation kinetics of settling particles is studied theoretically and numerically using the advection–diffusion equation. Agglomeration caused by these mechanisms (diffusion and advection) is important for both small particles (e.g., primary ash or soot particles in the atmosphere) and large particles of identical or close size, where the spatial inhomogeneity is less pronounced. Analytical results can be obtained for small and large Péclet numbers, which determine the relative importance of diffusion and advection. For small numbers (spatial inhomogeneity is mainly due to diffusion), an expression for the aggregation rate is obtained using an expansion in terms of Péclet numbers. For large Péclet numbers, when advection is the main source of spatial inhomogeneity, the aggregation rate is derived from ballistic coefficients. Combining these results yields a rational approximation for the whole range of Péclet numbers. The aggregation rates are also estimated by numerically solving the advection–diffusion equation. The numerical results agree well with the analytical theory for a wide range of Péclet numbers (extending over four orders of magnitude).
Key words: coagulation kernel, spatial inhomogeneity, Péclet number.
Funding agency Grant number
Russian Science Foundation 21-11-00363
19-11-00338
The work by Brilliantov, Zagidullin, and Smirnov (derivation of the equations, formulation of the problem, and the numerical computations) was supported by the Russian Science Foundation (project no. 21-11-00363) and the work by Matveev (construction of the rational approximation) was supported by the Russian Science Foundation (project no. 19-11-00338).
Received: 28.05.2022
Revised: 27.09.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 4, Pages 596–605
DOI: https://doi.org/10.1134/S096554252304005X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: N. V. Brilliantov, R. R. Zagidullin, S. A. Matveev, A. P. Smirnov, “Aggregation kinetics in sedimentation: Effect of diffusion of particles”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 629–638; Comput. Math. Math. Phys., 63:4 (2023), 596–605
Citation in format AMSBIB
\Bibitem{BriZagMat23}
\by N.~V.~Brilliantov, R.~R.~Zagidullin, S.~A.~Matveev, A.~P.~Smirnov
\paper Aggregation kinetics in sedimentation: Effect of diffusion of particles
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 4
\pages 629--638
\mathnet{http://mi.mathnet.ru/zvmmf11539}
\crossref{https://doi.org/10.31857/S0044466923040051}
\elib{https://elibrary.ru/item.asp?id=50502009}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 4
\pages 596--605
\crossref{https://doi.org/10.1134/S096554252304005X}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11539
  • https://www.mathnet.ru/eng/zvmmf/v63/i4/p629
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024