Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 4, Pages 584–595
DOI: https://doi.org/10.31857/S0044466923040038
(Mi zvmmf11536)
 

This article is cited in 6 scientific papers (total in 6 papers)

Partial Differential Equations

Uniqueness of solutions to initial-boundary value problems for parabolic systems with Dini-continuous coefficients in a semibounded domain on the plane

E. A. Baderko, S. I. Saharov

Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia
Citations (6)
Abstract: The first and second initial-boundary value problems for second-order parabolic systems with coefficients satisfying the Dini condition in a semibounded plane domain with a nonsmooth lateral boundary admitting cusps are considered. Theorems on the uniqueness of classical solutions of these problems in the class of functions that are continuous and bounded together with their first spatial derivatives in the closure of this domain are proved.
Key words: parabolic systems, initial-boundary value problems, uniqueness of a classical solution, nonsmooth lateral boundary, boundary integral equations.
Received: 11.08.2022
Revised: 23.09.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 4, Pages 553–563
DOI: https://doi.org/10.1134/S0965542523040036
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: E. A. Baderko, S. I. Saharov, “Uniqueness of solutions to initial-boundary value problems for parabolic systems with Dini-continuous coefficients in a semibounded domain on the plane”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 584–595; Comput. Math. Math. Phys., 63:4 (2023), 553–563
Citation in format AMSBIB
\Bibitem{BadSah23}
\by E.~A.~Baderko, S.~I.~Saharov
\paper Uniqueness of solutions to initial-boundary value problems for parabolic systems with Dini-continuous coefficients in a semibounded domain on the plane
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 4
\pages 584--595
\mathnet{http://mi.mathnet.ru/zvmmf11536}
\crossref{https://doi.org/10.31857/S0044466923040038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4574675}
\elib{https://elibrary.ru/item.asp?id=50502006}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 4
\pages 553--563
\crossref{https://doi.org/10.1134/S0965542523040036}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11536
  • https://www.mathnet.ru/eng/zvmmf/v63/i4/p584
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024