Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 4, Pages 557–572
DOI: https://doi.org/10.31857/S0044466923040129
(Mi zvmmf11534)
 

This article is cited in 1 scientific paper (total in 1 paper)

General numerical methods

Estimating the domain of absolute stability of a numerical scheme based on the method of solution continuation with respect to a parameter for solving stiff initial value problems

E. B. Kuznetsova, S. S. Leonovab, E. D. Tsapkoa

a Moscow State Aviation Institute, 125993, Moscow, Russia
b RUDN University, 117198, Moscow, Russia
Citations (1)
Abstract: The modeling of physical and technological processes often involves solving stiff initial value problems. In most cases, their exact solution is difficult to find, while numerical schemes sometimes fail to produce a sufficiently accurate solution in acceptable computation time. Moreover, for some classes of problems, numerical solution schemes are unsuitable because of their insufficient stability. This paper deals with numerical methods based on solution continuation with respect to arguments of various types that make it possible to enhance the stability of explicit numerical schemes. Most frequently, the used best argument is hardly applicable to problems in which the integral curves grow at a superpower or nearly exponential rate. Previously, the authors proposed a modification of the best argument that alleviates these disadvantages. In the present paper, we estimate the domain of absolute stability of the explicit Euler scheme as applied to problems transformed to a modified best argument of special form and refine the proof of a similar estimate for initial value problems transformed to the best argument. A test initial value problem is used to verify the resulting theoretical estimates and to analyze the application of the modified best argument of solution continuation.
Key words: absolute stability, stability domain, initial value problem, explicit Euler scheme, Dahlquist problem, method of solution continuation, best argument, modified best argument.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-90054
This work was supported by the Russian Foundation for Basic Research, project no. 20-31-90054.
Received: 11.08.2022
Revised: 01.09.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 4, Pages 528–541
DOI: https://doi.org/10.1134/S0965542523040115
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Estimating the domain of absolute stability of a numerical scheme based on the method of solution continuation with respect to a parameter for solving stiff initial value problems”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 557–572; Comput. Math. Math. Phys., 63:4 (2023), 528–541
Citation in format AMSBIB
\Bibitem{KuzLeoTsa23}
\by E.~B.~Kuznetsov, S.~S.~Leonov, E.~D.~Tsapko
\paper Estimating the domain of absolute stability of a numerical scheme based on the method of solution continuation with respect to a parameter for solving stiff initial value problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 4
\pages 557--572
\mathnet{http://mi.mathnet.ru/zvmmf11534}
\crossref{https://doi.org/10.31857/S0044466923040129}
\elib{https://elibrary.ru/item.asp?id=50502004}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 4
\pages 528--541
\crossref{https://doi.org/10.1134/S0965542523040115}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11534
  • https://www.mathnet.ru/eng/zvmmf/v63/i4/p557
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:119
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024