Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 4, Pages 548–556
DOI: https://doi.org/10.31857/S0044466923040117
(Mi zvmmf11533)
 

General numerical methods

Improved accuracy estimation of the Tikhonov method for ill-posed optimization problems in Hilbert space

M. M. Kokurin

Mari State University, 424000, Yoshkar-Ola, Russia
Abstract: The Tikhonov method is studied as applied to ill-posed problems of minimizing a smooth nonconvex functional. Assuming that the sought solution satisfies the source condition, an accuracy estimate for the Tikhonov method is obtained in terms of the regularization parameter. Previously, such an estimate was obtained only under the assumption that the functional is convex or under a structural condition imposed on its nonlinearity. Additionally, a new accuracy estimate for the Tikhonov method is obtained in the case of an approximately specified functional.
Key words: ill-posed optimization problem in Hilbert space, Tikhonov method, accuracy estimation.
Funding agency Grant number
Russian Science Foundation 22-71-10070
This work was supported by the Russian Science Foundation, project no. 22-71-10070.
Received: 18.08.2022
Revised: 21.09.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 4, Pages 519–527
DOI: https://doi.org/10.1134/S0965542523040103
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. M. Kokurin, “Improved accuracy estimation of the Tikhonov method for ill-posed optimization problems in Hilbert space”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 548–556; Comput. Math. Math. Phys., 63:4 (2023), 519–527
Citation in format AMSBIB
\Bibitem{Kok23}
\by M.~M.~Kokurin
\paper Improved accuracy estimation of the Tikhonov method for ill-posed optimization problems in Hilbert space
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 4
\pages 548--556
\mathnet{http://mi.mathnet.ru/zvmmf11533}
\crossref{https://doi.org/10.31857/S0044466923040117}
\elib{https://elibrary.ru/item.asp?id=50502003}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 4
\pages 519--527
\crossref{https://doi.org/10.1134/S0965542523040103}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11533
  • https://www.mathnet.ru/eng/zvmmf/v63/i4/p548
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024