Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 2, Pages 273–281
DOI: https://doi.org/10.31857/S0044466923020151
(Mi zvmmf11514)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

Asymptotics of the solution to the Cauchy problem for a singularly perturbed operator differential transport equation with weak diffusion

A. V. Zaborskiya, A. V. Nesterovb

a "RADICO" Scientific Production Company, 249035, Obninsk, Kaluga oblast, Russia
b Plekhanov Russian University of Economics, 117997, Moscow, Russia
Citations (2)
Abstract: Formal asymptotic expansions of the solution to the Cauchy problem for a singularly perturbed operator differential transport equation with weak diffusion and small nonlinearity are constructed in the critical case. Under certain conditions imposed on the data of the problem, an asymptotic expansion of the solution is constructed in the form of series in powers of a small parameter with coefficients depending on stretched variables. Problems for determining all terms of the asymptotic expansion are obtained. It is shown that the leading term of the solution asymptotics is determined by solving Cauchy problems for a parabolic Burgers-type equation and, under certain conditions, for a Korteweg–de Vries–Burgers type equation. The remainder terms are estimated with respect to the residual.
Key words: operator differential equations, transport equations, Cauchy problem, singular perturbations, critical case, asymptotic expansions, parabolic equations, Korteweg–de Vries–Burgers equations.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSSW-2020-0008
This research was supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment “Development of methodology and program platform for construction of digital twins, data mining, and forecasting of complex economic systems”, project no. FSSW-2020-0008.
Received: 06.06.2022
Revised: 06.06.2022
Accepted: 07.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 2, Pages 241–249
DOI: https://doi.org/10.1134/S0965542523020136
Bibliographic databases:
Document Type: Article
UDC: 517.953
Language: Russian
Citation: A. V. Zaborskiy, A. V. Nesterov, “Asymptotics of the solution to the Cauchy problem for a singularly perturbed operator differential transport equation with weak diffusion”, Zh. Vychisl. Mat. Mat. Fiz., 63:2 (2023), 273–281; Comput. Math. Math. Phys., 63:2 (2023), 241–249
Citation in format AMSBIB
\Bibitem{ZabNes23}
\by A.~V.~Zaborskiy, A.~V.~Nesterov
\paper Asymptotics of the solution to the Cauchy problem for a singularly perturbed operator differential transport equation with weak diffusion
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 2
\pages 273--281
\mathnet{http://mi.mathnet.ru/zvmmf11514}
\crossref{https://doi.org/10.31857/S0044466923020151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4573233}
\elib{https://elibrary.ru/item.asp?id=50435454}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 2
\pages 241--249
\crossref{https://doi.org/10.1134/S0965542523020136}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11514
  • https://www.mathnet.ru/eng/zvmmf/v63/i2/p273
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024