Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 1, Pages 85–92
DOI: https://doi.org/10.31857/S0044466923010027
(Mi zvmmf11498)
 

Ordinary differential equations

Counterexamples to the assumption on the possibility of prolongation of truncated solutions of a truncated LODE

S. A. Abramov, A. A. Ryabenko, D. E. Khmelnov

Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119333, Moscow, Russia
Abstract: Previously, the authors proposed algorithms making it possible to find exponential-logarithmic solutions of linear ordinary differential equations with coefficients in the form of power series in which only the initial terms are known. The solution includes a finite number of power series, and the maximum possible number of their terms is calculated. Now, these algorithms are supplemented with the option to confirm the impossibility of obtaining a larger number of terms in the series without using additional information about the given equation a counterexample is constructed to the assumption that it is possible to obtain uniquely defined additional terms. In previous papers, the authors proposed such confirmations for the cases of Laurent and regular solutions.
Key words: differential equations, truncated power series, computer algebra systems.
Received: 25.04.2022
Revised: 01.06.2022
Accepted: 17.09.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 1, Pages 69–76
DOI: https://doi.org/10.1134/S0965542523010025
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: S. A. Abramov, A. A. Ryabenko, D. E. Khmelnov, “Counterexamples to the assumption on the possibility of prolongation of truncated solutions of a truncated LODE”, Zh. Vychisl. Mat. Mat. Fiz., 63:1 (2023), 85–92; Comput. Math. Math. Phys., 63:1 (2023), 69–76
Citation in format AMSBIB
\Bibitem{AbrRyaKhm23}
\by S.~A.~Abramov, A.~A.~Ryabenko, D.~E.~Khmelnov
\paper Counterexamples to the assumption on the possibility of prolongation of truncated solutions of a truncated LODE
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 1
\pages 85--92
\mathnet{http://mi.mathnet.ru/zvmmf11498}
\crossref{https://doi.org/10.31857/S0044466923010027}
\elib{https://elibrary.ru/item.asp?id=50404570}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 1
\pages 69--76
\crossref{https://doi.org/10.1134/S0965542523010025}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11498
  • https://www.mathnet.ru/eng/zvmmf/v63/i1/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024