Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 1, Pages 31–42
DOI: https://doi.org/10.31857/S0044466923010143
(Mi zvmmf11493)
 

This article is cited in 4 scientific papers (total in 4 papers)

General numerical methods

Geometric algebra and quaternion techniques in computer algebra systems for describing rotations in Eucledean space

T. R. Velievaa, M. N. Gevorgyana, A. V. Demidovaa, A. V. Korolkovaa, D. S. Kulyabovab

a Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
b Joint Institute for Nuclear Research, 141980, Dubna, Moscow oblast, Russia
Citations (4)
Abstract: Tensor formalism (and its special case–vector formalism) is a mathematical technique that is widely used in physical and engineering problems. Even though this formalism is fairy universal and suitable for describing many spaces, the application of other special mathematical techniques is sometimes required. For example, the problem of rotation in a 3D space is not very well described in tensor representation, and it is reasonable to use the formalism of Clifford algebra, in particular, quaternions and geometric algebra representations for its solution. In this paper, computer algebra is used to demonstrate the solution of the problem of rotation in a 3D space using both the quaternion and geometric algebra formalisms. It is shown that although these formalisms are fundamentally similar, the latter one seems to be clearer both for computations and interpretation of results.
Key words: geometric algebra, quaternions, computer algebra, multivector, rotations in 3D space.
Funding agency Grant number
RUDN University Strategic Academic Leadership Program
This work was supported by the program of strategic academic leadership of the Peoples’ Friendship University of Russia (RUDN University).
Received: 15.04.2022
Revised: 15.04.2022
Accepted: 17.09.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 1, Pages 29–39
DOI: https://doi.org/10.1134/S0965542523010141
Bibliographic databases:
Document Type: Article
UDC: 519.16
Language: Russian
Citation: T. R. Velieva, M. N. Gevorgyan, A. V. Demidova, A. V. Korolkova, D. S. Kulyabov, “Geometric algebra and quaternion techniques in computer algebra systems for describing rotations in Eucledean space”, Zh. Vychisl. Mat. Mat. Fiz., 63:1 (2023), 31–42; Comput. Math. Math. Phys., 63:1 (2023), 29–39
Citation in format AMSBIB
\Bibitem{VelGevDem23}
\by T.~R.~Velieva, M.~N.~Gevorgyan, A.~V.~Demidova, A.~V.~Korolkova, D.~S.~Kulyabov
\paper Geometric algebra and quaternion techniques in computer algebra systems for describing rotations in Eucledean space
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 1
\pages 31--42
\mathnet{http://mi.mathnet.ru/zvmmf11493}
\crossref{https://doi.org/10.31857/S0044466923010143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4572156}
\elib{https://elibrary.ru/item.asp?id=50398522}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 1
\pages 29--39
\crossref{https://doi.org/10.1134/S0965542523010141}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11493
  • https://www.mathnet.ru/eng/zvmmf/v63/i1/p31
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024