Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 12, Page 2112
DOI: https://doi.org/10.31857/S0044466922120067
(Mi zvmmf11490)
 

Mathematical physics

A novel numerical approach for Fredholm integro-differential equations

H. G. Cakira, F. Cakirb, M. Cakirc

a Department of Mathematics, Adyaman Universitesi, Adıyaman, Turkey
b Department of Mathematics, Batman – Universitesi, Batman, Turkey
c Department of Mathematics, Yüzüncü Yıl Universitesi, Van, Turkey
Abstract: We examine the numerical solution of a second-order linear Fredholm integro-differential equation (FIDE) by a finite difference method. The discretization of the problem is obtained by a finite difference method on a uniform mesh. We construct the method using the integral identity method with basis functions and dealing with the integral terms by interpolating quadrature rules with remainder terms. We further employ the factorization method to establish the algorithm. We demonstrate the error estimates and the convergence of the method. The numerical results are enclosed to verify the order of accuracy.
Key words: FIDE, difference scheme, error estimates.
Received: 22.05.2022
Revised: 22.05.2022
Accepted: 04.08.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 12, Pages 2161–2171
DOI: https://doi.org/10.1134/S0965542522120065
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: English
Citation: H. G. Cakir, F. Cakir, M. Cakir, “A novel numerical approach for Fredholm integro-differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2112; Comput. Math. Math. Phys., 62:12 (2022), 2161–2171
Citation in format AMSBIB
\Bibitem{CakCakCak22}
\by H.~G.~Cakir, F.~Cakir, M.~Cakir
\paper A novel numerical approach for Fredholm integro-differential equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 12
\pages 2112
\mathnet{http://mi.mathnet.ru/zvmmf11490}
\crossref{https://doi.org/10.31857/S0044466922120067}
\elib{https://elibrary.ru/item.asp?id=49581406}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 12
\pages 2161--2171
\crossref{https://doi.org/10.1134/S0965542522120065}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11490
  • https://www.mathnet.ru/eng/zvmmf/v62/i12/p2112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024