Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 12, Pages 2054–2076
DOI: https://doi.org/10.31857/S0044466922120043
(Mi zvmmf11485)
 

This article is cited in 3 scientific papers (total in 3 papers)

Partial Differential Equations

Formulas for computing the Lauricella function in the case of crowding of variables

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 119333, Moscow, Russia
Citations (3)
Abstract: For the Lauricella function $F^{(N)}_D$, which is a hypergeometric function of several complex variables $z_1,\dots, z_N$, analytic continuation formulas are constructed that correspond to the intersection of an arbitrary number of singular hyperplanes of the form $\{z_j=z_l\}$, $j,l=\overline{1,N}$, $j\ne l$. These formulas give an expression for the considered function in the form of linear combinations of Horn hypergeometric series in $N$ variables satisfying the same system of partial differential equations as the original series defining $F^{(N)}_D$ in the unit polydisk. By applying these formulas, the function $F^{(N)}_D$ and Euler-type integrals expressed in terms of $F^{(N)}_D$ can be efficiently computed (with the help of exponentially convergent series) in the entire complex space $\mathbb{C}^N$ in the complicated cases when the variables form one or several groups of “very close” quantities. This situation is referred to as crowding, with the term taken from works concerned with conformal maps.
Key words: hypergeometric functions of several variables, Lauricella and Horn functions, analytic continuation, crowding effect.
Funding agency Grant number
Russian Science Foundation 22-21-00727
This work was financially supported by the Russian Science Foundation, grant no. 22-21-00727.
Received: 20.05.2022
Revised: 23.06.2022
Accepted: 12.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 12, Pages 2069–2090
DOI: https://doi.org/10.1134/S0965542522120041
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. I. Bezrodnykh, “Formulas for computing the Lauricella function in the case of crowding of variables”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2054–2076; Comput. Math. Math. Phys., 62:12 (2022), 2069–2090
Citation in format AMSBIB
\Bibitem{Bez22}
\by S.~I.~Bezrodnykh
\paper Formulas for computing the Lauricella function in the case of crowding of variables
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 12
\pages 2054--2076
\mathnet{http://mi.mathnet.ru/zvmmf11485}
\crossref{https://doi.org/10.31857/S0044466922120043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4531783}
\elib{https://elibrary.ru/item.asp?id=49581401}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 12
\pages 2069--2090
\crossref{https://doi.org/10.1134/S0965542522120041}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11485
  • https://www.mathnet.ru/eng/zvmmf/v62/i12/p2054
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024