Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 12, Pages 2043–2053
DOI: https://doi.org/10.31857/S0044466922120134
(Mi zvmmf11484)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary differential equations

Analytical-numerical method for analyzing small perturbations of geostrophic ocean currents with a general parabolic vertical profile of velocity

S. L. Skorokhodova, N. P. Kuzminab

a Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119991, Moscow, Russia
b P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Citations (1)
Abstract: An analytical-numerical method is developed for solving a problem for the potential vorticity equation in the quasi-geostrophic approximation with allowance for vertical diffusion of mass and momentum. The method is used to analyze small perturbations of ocean currents of finite transverse scale with a general parabolic vertical profile of velocity. For the arising spectral non-self-adjoint problem, asymptotic expansions of the eigenfunctions and eigenvalues are constructed for small values of the wave number $k$. It is shown that, for small $k$, there exist two bounded eigenvalues and a countable set of unboundedly growing eigenvalues. For a varying wave number $k$, the trajectories of eigenvalues are calculated for various dimensionless parameters of the problem. As a result, it is shown that the growth rate of unstable perturbations depends significantly on the physical parameters of the model.
Key words: spectral non-self-adjoint problem, asymptotic expansions, parameter continuation method.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation FMWE-2021-0001
N.P. Kuzmina’s research was supported by the Shirshov Institute of Oceanology of the Russian Academy of Sciences, subject FMWE-2021-0001.
Received: 24.04.2022
Revised: 27.05.2022
Accepted: 21.06.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 12, Pages 2058–2068
DOI: https://doi.org/10.1134/S0965542522120120
Bibliographic databases:
Document Type: Article
UDC: 517.63
Language: Russian
Citation: S. L. Skorokhodov, N. P. Kuzmina, “Analytical-numerical method for analyzing small perturbations of geostrophic ocean currents with a general parabolic vertical profile of velocity”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2043–2053; Comput. Math. Math. Phys., 62:12 (2022), 2058–2068
Citation in format AMSBIB
\Bibitem{SkoKuz22}
\by S.~L.~Skorokhodov, N.~P.~Kuzmina
\paper Analytical-numerical method for analyzing small perturbations of geostrophic ocean currents with a general parabolic vertical profile of velocity
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 12
\pages 2043--2053
\mathnet{http://mi.mathnet.ru/zvmmf11484}
\crossref{https://doi.org/10.31857/S0044466922120134}
\elib{https://elibrary.ru/item.asp?id=49581400}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 12
\pages 2058--2068
\crossref{https://doi.org/10.1134/S0965542522120120}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11484
  • https://www.mathnet.ru/eng/zvmmf/v62/i12/p2043
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024