Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 12, Pages 1943–1980
DOI: https://doi.org/10.31857/S0044466922120146
(Mi zvmmf11479)
 

This article is cited in 4 scientific papers (total in 4 papers)

General numerical methods

Conformal mapping of an $L$-shaped domain in analytical form

V. I. Vlasovab, S. L. Skorokhodova

a Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119333, Moscow, Russia
b Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia
Citations (4)
Abstract: The problem of finding parameters of the Schwarz–Christoffel integral for a conformal mapping $f$ of a canonical domain onto an $L$-shaped one is solved analytically for arbitrary geometric parameters of the domain. The unknown preimage is represented in the form of a series in powers of a small parameter with coefficients written in closed form, and an estimate for the moduli of the coefficients is obtained. We find asymptotics for the crowding effect (crowding of preimages), which is especially pronounced for elongated domains are computing The mapping $f$ and its inverse $f^{-1}$ are computed using series with closed-form coefficients, whose domains of convergence collectively cover the entire (closed) mapped domain. Combining $f$ with linear fractional mappings and the elliptic sine function yields mappings of the half-plane, disk, and rectangle onto an $L$-shaped domain. Numerical implementations of the constructed mappings demonstrate the high efficiency of the applied methods.
Key words: $L$-shaped domain with arbitrary parameters, Schwarz–Christoffel integral, problem of parameters, crowding, analytical methods, asymptotics for an elongated domain.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2022-284
This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics, agreement no. 075-15-2022-284.
Received: 11.03.2022
Revised: 08.05.2022
Accepted: 14.06.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 12, Pages 1971–2007
DOI: https://doi.org/10.1134/S0965542522120132
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. I. Vlasov, S. L. Skorokhodov, “Conformal mapping of an $L$-shaped domain in analytical form”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 1943–1980; Comput. Math. Math. Phys., 62:12 (2022), 1971–2007
Citation in format AMSBIB
\Bibitem{VlaSko22}
\by V.~I.~Vlasov, S.~L.~Skorokhodov
\paper Conformal mapping of an $L$-shaped domain in analytical form
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 12
\pages 1943--1980
\mathnet{http://mi.mathnet.ru/zvmmf11479}
\crossref{https://doi.org/10.31857/S0044466922120146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=821711}
\elib{https://elibrary.ru/item.asp?id=49581395}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 12
\pages 1971--2007
\crossref{https://doi.org/10.1134/S0965542522120132}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11479
  • https://www.mathnet.ru/eng/zvmmf/v62/i12/p1943
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:154
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024