Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 11, Pages 1822–1839
DOI: https://doi.org/10.31857/S0044466922110096
(Mi zvmmf11468)
 

This article is cited in 3 scientific papers (total in 3 papers)

General numerical methods

Error control for approximate solutions of a class of singularly perturbed boundary value problems

S. I. Repinab

a Steklov Institute of Mathematics (St. Petersburg Branch), Russian Academy of Sciences, 191023, St. Petersburg, Russia
b St. Petersburg Polytechnical University, 195251, St. Petersburg, Russia
Citations (3)
Abstract: Reaction–convection–diffusion equations with a small parameter at the highest derivative are considered. The question as to how the accuracy of approximate solutions of such problems can be effectively controlled with the help of a posteriori estimates is studied. The resulting estimates do not depend on the method used to construct the approximate solution and perform well in a wide range of parameter values. The estimates are derived relying on special (a posteriori) identities whose left-hand side represents a measure of the deviation of the approximate solution from the exact one and the right-hand side involves data of the problem and a known approximate solution. It is shown on a series of examples that the errors of both rough and accurate approximations of problems can be efficiently computed for various values of the small parameter by applying these identities and estimates following from them.
Key words: singularly perturbed equations, boundary value problems, identities for measures of deviation from the exact solution, a posteriori estimates of functional type.
Received: 22.06.2022
Revised: 22.06.2022
Accepted: 07.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 11, Pages 1799–1816
DOI: https://doi.org/10.1134/S0965542522110070
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: S. I. Repin, “Error control for approximate solutions of a class of singularly perturbed boundary value problems”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1822–1839; Comput. Math. Math. Phys., 62:11 (2022), 1799–1816
Citation in format AMSBIB
\Bibitem{Rep22}
\by S.~I.~Repin
\paper Error control for approximate solutions of a class of singularly perturbed boundary value problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 11
\pages 1822--1839
\mathnet{http://mi.mathnet.ru/zvmmf11468}
\crossref{https://doi.org/10.31857/S0044466922110096}
\elib{https://elibrary.ru/item.asp?id=49455076}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 11
\pages 1799--1816
\crossref{https://doi.org/10.1134/S0965542522110070}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11468
  • https://www.mathnet.ru/eng/zvmmf/v62/i11/p1822
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024