Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 10, Pages 1707–1722
DOI: https://doi.org/10.31857/S0044466922100052
(Mi zvmmf11463)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Self-induced suction of fluid in a turbulent boundary layer on a permeable surface

A. R. Gorbushinab, V. B. Zametaevabc, I. I. Lipatovab, M. A. Fedotova, A. A. Khokhlova

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Central Aerohydrodynamic Institute
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Citations (1)
Abstract: A turbulent boundary layer of a viscous incompressible fluid developing past a flat plate at finite distances from the laminar–turbulent transition zone is studied. It is assumed that the characteristic Reynolds number of the flow is large, while the thickness of the boundary layer is small. The problem is analyzed using the asymptotic method of multiple scales, which is used to find solutions of the Navier–Stokes equations. The velocity and pressure in the turbulent boundary layer are represented in the form of a sum of steady and perturbed terms, instead of traditional sums of time-averaged quantities and their fluctuations. It turns out that such a steady flow (called secondary) inside the turbulent boundary layer is determined by classical ideas and results of Reynolds and Kolmogorov without using any closure hypothesis. In terms of physics, this steady solution represents self-induced suction of the fluid from the outer flow to the turbulent boundary layer, which ensures kinetic energy transfer from the maximum-velocity zone to the basic part of the boundary layer. The found solution explains the concept of turbulent viscosity, since the solution is applicable on the scale of the boundary layer thickness. In the basic approximation, the zones of generation and dissipation of Kolmogorov vortices do not affect this steady solution. The features of solutions in the cases when the fluid flows into and out of the turbulent boundary layer through a permeable surface are studied. The obtained solutions are compared with available experimental data.
Key words: turbulent boundary layer, mathematical modeling, asymptotic methods.
Funding agency Grant number
Russian Science Foundation 20-11-20006
Received: 13.02.2022
Revised: 31.03.2022
Accepted: 08.06.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 10, Pages 1691–1706
DOI: https://doi.org/10.1134/S0965542522100050
Bibliographic databases:
Document Type: Article
UDC: 532.6
Language: Russian
Citation: A. R. Gorbushin, V. B. Zametaev, I. I. Lipatov, M. A. Fedotov, A. A. Khokhlov, “Self-induced suction of fluid in a turbulent boundary layer on a permeable surface”, Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022), 1707–1722; Comput. Math. Math. Phys., 62:10 (2022), 1691–1706
Citation in format AMSBIB
\Bibitem{GorZamLip22}
\by A.~R.~Gorbushin, V.~B.~Zametaev, I.~I.~Lipatov, M.~A.~Fedotov, A.~A.~Khokhlov
\paper Self-induced suction of fluid in a turbulent boundary layer on a permeable surface
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 10
\pages 1707--1722
\mathnet{http://mi.mathnet.ru/zvmmf11463}
\crossref{https://doi.org/10.31857/S0044466922100052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4499886}
\elib{https://elibrary.ru/item.asp?id=49344341}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 10
\pages 1691--1706
\crossref{https://doi.org/10.1134/S0965542522100050}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11463
  • https://www.mathnet.ru/eng/zvmmf/v62/i10/p1707
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024