Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 10, Pages 1696–1706
DOI: https://doi.org/10.31857/S0044466922100039
(Mi zvmmf11462)
 

This article is cited in 6 scientific papers (total in 6 papers)

Mathematical physics

Theoretical analysis and numerical implementation of a stationary diffusion–drift model of polar dielectric charging

R. V. Brizitskiia, N. N. Maksimovab, A. G. Maslovskayab

a Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
b Amur State University, 675000, Blagoveshchensk, Amur oblast, Russia
Citations (6)
Abstract: The global solvability and local uniqueness of the solution of a boundary value problem for the model of electron-induced charging of polar dielectrics are proved. The model is described by a semilinear diffusion–drift equation and Maxwell's equations, which relate the charge density and the electric field. For the charge density function, the maximum and minimum principle is established, which is used to control the data of the computational experiment. The results of a finite element implementation of a mathematical model of polar dielectric charging under conditions of electron irradiation are presented and discussed.
Key words: electron drift–diffusion model, polar dielectric charging model, global solvability, local uniqueness, maximum principle.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation ÀÀÀÀ-À20-120120390006-0
1022052600018-5-1.2.1
This work was carried out as part of research and development project no. ÀÀÀÀ-À20-120120390006-0 of the Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, and was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2021-1395 and project no. 122082400001-8); project no. 1022052600018-5-1.2.1;1.1.2.
Received: 16.03.2022
Revised: 01.04.2022
Accepted: 08.06.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 10, Pages 1680–1690
DOI: https://doi.org/10.1134/S0965542522100037
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: R. V. Brizitskii, N. N. Maksimova, A. G. Maslovskaya, “Theoretical analysis and numerical implementation of a stationary diffusion–drift model of polar dielectric charging”, Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022), 1696–1706; Comput. Math. Math. Phys., 62:10 (2022), 1680–1690
Citation in format AMSBIB
\Bibitem{BriMakMas22}
\by R.~V.~Brizitskii, N.~N.~Maksimova, A.~G.~Maslovskaya
\paper Theoretical analysis and numerical implementation of a stationary diffusion–drift model of polar dielectric charging
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 10
\pages 1696--1706
\mathnet{http://mi.mathnet.ru/zvmmf11462}
\crossref{https://doi.org/10.31857/S0044466922100039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4499885}
\elib{https://elibrary.ru/item.asp?id=49344339}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 10
\pages 1680--1690
\crossref{https://doi.org/10.1134/S0965542522100037}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11462
  • https://www.mathnet.ru/eng/zvmmf/v62/i10/p1696
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024