Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 10, Pages 1632–1638
DOI: https://doi.org/10.31857/S0044466922100040
(Mi zvmmf11457)
 

Optimal control

Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations

Yu. G. Evtushenkoab, A. A. Tret'yakovacd

a Dorodnitsyn Computing Centre, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119333, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudnyi, Moscow oblast, Russia
c System Res. Inst., Polish Acad. Sciences, 01-447 Warsaw, Newelska 6, Poland
d Siedlce University, Faculty of Sciences, 08-110 Siedlce, Poland
Abstract: A new approach is proposed for studying the convergence of continuous analogues of the gradient and Newton methods as applied to degenerate nonlinear systems of equations and unconstrained optimization problems in the case when traditional Lyapunov functions are ineffective or inapplicable. The main tool for analyzing degenerate systems is the $p$-factor Lyapunov function, which makes it possible to reduce the original problem to a new one based on constructions of $p$-regularity theory and to construct a method converging to the exact solution in the degenerate case.
Key words: degeneration, stability, $p$-regularity, $p$-factor Lyapunov function, convergence.
Funding agency Grant number
Russian Science Foundation 21-71-30005
This work was supported by the Russian Science Foundation, grant no. 21-71-30005.
Received: 23.03.2022
Revised: 23.03.2022
Accepted: 08.06.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 10, Pages 1602–1608
DOI: https://doi.org/10.1134/S0965542522100049
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: Yu. G. Evtushenko, A. A. Tret'yakov, “Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022), 1632–1638; Comput. Math. Math. Phys., 62:10 (2022), 1602–1608
Citation in format AMSBIB
\Bibitem{EvtTre22}
\by Yu.~G.~Evtushenko, A.~A.~Tret'yakov
\paper Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 10
\pages 1632--1638
\mathnet{http://mi.mathnet.ru/zvmmf11457}
\crossref{https://doi.org/10.31857/S0044466922100040}
\elib{https://elibrary.ru/item.asp?id=49344328}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 10
\pages 1602--1608
\crossref{https://doi.org/10.1134/S0965542522100049}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11457
  • https://www.mathnet.ru/eng/zvmmf/v62/i10/p1632
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:120
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024