Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 9, Pages 1491–1521
DOI: https://doi.org/10.31857/S0044466922090083
(Mi zvmmf11448)
 

Partial Differential Equations

Three-dimensional stationary spherically symmetric stellar dynamic models depending on the local energy

J. Batta, E. Jörna, A. L. Skubachevskiib

a Mathematisches Institut der Universität München 80333 München, Theresienstr. 39, Germany
b Peoples' Friendship University of Russia, Moscow
Abstract: The stellar dynamic models considered here deal with triples $(f,\rho,U)$ of three functions: the distribution function $f=f(r,u)$, the local density $\rho=\rho(r)$, and the Newtonian potential $U=U(r)$, where $r:=|x|$, $u:=|v|((x,v)\in\mathbb{R}^3\times\mathbb{R}^3$ are the space-velocity coordinates), and $f$ is a function $q$ of the local energy $E=U(r)+\frac{u^2}{2}$. Our first result is an answer to the following question: Given a (positive) function $p=p(r)$ on a bounded interval $[0,R]$, how can one recognize $p$ as the local density of a stellar dynamic model of the given type (“inverse problem”)? If this is the case, we say that $p$ is “extendable” (to a complete stellar dynamic model). Assuming that $p$ is strictly decreasing we reveal the connection between $p$ and $F$, which appears in the nonlinear integral equation $p=FU[p]$ and the solvability of Eddington’s equation between $F$ and $q$ (Theorem 4.1). Second, we investigate the following question (“direct problem”): Which $q$ induce distribution functions $f$ of the form $f=q(-E(r,u)-E_0)$ of a stellar dynamic model? This leads to the investigation of the nonlinear equation $p=FU[p]$ in an approximative and constructive way by mainly numerical methods.
Key words: three-dimensional Vlasov–Poisson system, stationary solutions, numerical approximation.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-03-2020-223/3
The work of the third author was supported by the Ministry of Science and Higher Education of the Russian Federation: agreement no. 075-03-2020-223/3 (FSSF-2020-0018).
Received: 18.02.2022
Revised: 18.02.2022
Accepted: 11.05.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 9, Pages 1455–1485
DOI: https://doi.org/10.1134/S0965542522090081
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: J. Batt, E. Jörn, A. L. Skubachevskii, “Three-dimensional stationary spherically symmetric stellar dynamic models depending on the local energy”, Zh. Vychisl. Mat. Mat. Fiz., 62:9 (2022), 1491–1521; Comput. Math. Math. Phys., 62:9 (2022), 1455–1485
Citation in format AMSBIB
\Bibitem{BatJoeSku22}
\by J.~Batt, E.~J\"orn, A.~L.~Skubachevskii
\paper Three-dimensional stationary spherically symmetric stellar dynamic models depending on the local energy
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 9
\pages 1491--1521
\mathnet{http://mi.mathnet.ru/zvmmf11448}
\crossref{https://doi.org/10.31857/S0044466922090083}
\elib{https://elibrary.ru/item.asp?id=49273355}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 9
\pages 1455--1485
\crossref{https://doi.org/10.1134/S0965542522090081}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11448
  • https://www.mathnet.ru/eng/zvmmf/v62/i9/p1491
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:122
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024