Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1428–1444
DOI: https://doi.org/10.31857/S0044466922080087
(Mi zvmmf11444)
 

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
Mathematical physics

Shock-capturing exponential multigrid methods for steady compressible flows

Sh.-J. Li

Beijing Computational Science Research Center
Abstract: In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a s-stage preconditioned Runge–Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves.
Key words: multigrid method, exponential time discretization, shock wave, compressible flow, preconditioned Runge–Kutta method.
Funding agency Grant number
National Natural Science Foundation of China U1938402
This work is funded by the National Natural Science Foundation of China (NSFC) under the Grant U1930402. Beijing Computational Science Research Center provides computing resources.
Received: 10.10.2021
Revised: 21.01.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1397–1412
DOI: https://doi.org/10.1134/S0965542522080085
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: Sh.-J. Li, “Shock-capturing exponential multigrid methods for steady compressible flows”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1428–1444; Comput. Math. Math. Phys., 62:8 (2022), 1397–1412
Citation in format AMSBIB
\Bibitem{Li22}
\by Sh.-J.~Li
\paper Shock-capturing exponential multigrid methods for steady compressible flows
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1428--1444
\mathnet{http://mi.mathnet.ru/zvmmf11444}
\crossref{https://doi.org/10.31857/S0044466922080087}
\elib{https://elibrary.ru/item.asp?id=49273514}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1397--1412
\crossref{https://doi.org/10.1134/S0965542522080085}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11444
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1428
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024