Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1323–1340
DOI: https://doi.org/10.31857/S0044466922080130
(Mi zvmmf11438)
 

This article is cited in 1 scientific paper (total in 1 paper)

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
Optimal control

Size gradation control for anisotropic mixed-element mesh adaptation

L.-M. Tenkès, F. Alauzet

INRIA Saclay
Citations (1)
Abstract: Metric-based mesh adaptation can be applied to hybrid mesh generation. Using a metric-orthogonal point-placement, a preliminary quasi-structured mesh is generated. Structured elements are then recovered in the most anisotropic areas. To this extent, it is necessary to ensure the smoothness of the metric field in the first place. This is achieved through a gradation correction process, that is the control of the size growth throughout the mesh. The smallest size prescriptions are spread using a metric intersection algorithm. In this paper, we demonstrate the relevance of size gradation control in our metric-based hybrid mesh generation process. Eventually, our goal is to design a gradation correction process that favors the alignment with the metric field, increases the number and improves the quality of the quadrilaterals. Several gradation control strategies are compared to determine which one is best-suited for hybrid mesh generation.
Key words: quad-dominant mesh, hybrid-mesh, mixed-element mesh, mesh adaptation, metric-orthogonal, metric gradation.
Received: 09.10.2021
Revised: 21.01.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1296–1312
DOI: https://doi.org/10.1134/S0965542522080127
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: L.-M. Tenkès, F. Alauzet, “Size gradation control for anisotropic mixed-element mesh adaptation”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1323–1340; Comput. Math. Math. Phys., 62:8 (2022), 1296–1312
Citation in format AMSBIB
\Bibitem{TenAla22}
\by L.-M.~Tenk\`es, F.~Alauzet
\paper Size gradation control for anisotropic mixed-element mesh adaptation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1323--1340
\mathnet{http://mi.mathnet.ru/zvmmf11438}
\crossref{https://doi.org/10.31857/S0044466922080130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4480791}
\elib{https://elibrary.ru/item.asp?id=49273508}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1296--1312
\crossref{https://doi.org/10.1134/S0965542522080127}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11438
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024